| 研究生: |
黃惠欽 Huang, Hui-Ching |
|---|---|
| 論文名稱: |
Cn 波在數值水槽中之生成與傳遞現象 Generation and propagation of cnoidal waves in a numerical wave tank |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 數值造波水槽 、波浪傳遞 、長波 、Cn 波 |
| 外文關鍵詞: | Cnoidal waves, Numerical Wave Tank, Wave propagation, Long Waves |
| 相關次數: | 點閱:177 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是建立一可生成 之橢圓餘弦波(Cnoidal waves,Cn波)的二維數值黏性造波水槽,並探討此水槽所生成橢圓餘弦波之傳遞特性。建立數值造波水槽的方法係利用數值方法求解二維非穩態的Navier-Stokes方程式及完整的自由液面邊界條件,而上游邊界條件(即入射波浪)則藉由一置放於數值計算域之直推式造波板依Goring and Raichlen (1980) 的造波理論生成所需的波浪。數值黏性造波水槽所得橢圓餘弦波水位及流體質點速度經與理論解及以線性或Madsen造波理論所得之數值解比較皆相當吻合。在波浪傳遞方面,研究結果發現橢圓餘弦波於傳遞過程中隨著 數變小波列會產生不穩定的現象;而當 數較大時,由於黏性的作用,波高會逐漸衰減,且波列最前緣波也會隨傳遞逐漸演變成週期相當長之長波。
This study investigates the generation and the propagation of cnoidal waves ( ) in a numerical viscous wave tank. The 2-d unsteady Navier-Stokes equations, the exact free surface boundary conditions and the upstream boundary condition at the wavemaker were solved numerically to develop the two-dimensional numerical wave flume. A piston-type wavemaker was set up in the computational domain to produce the incidents cnoidal waves based on the theory proposed by Goring and Raichlen (1980). The accuracy of the numerical results for the incident wave profiles and the associated velocity profiles of the water particle were verified by comparison with the theoretical solutions. For wave propagation, the numerical results showed that the cnoidal waves with larger Ursell number are more stable than those with smaller Ursell number. However, the front edge of the wave trains with larger Ursell number will evolve gradually into several long waves as waves propagate.
參考文獻
1. Buhr Hansen, J. and I. A. Svendsen, ”Regular Waves in Shoaling Water-Experimental Data”, Series paper 21, ISVA, Tech. Univ. Demark., 1979.
2. Chan, R. K. and R. L. Street, ”A Computer Study of Finite-Amplitude- Water Waves”, J. Comput. Phys., Vol. 6, pp. 95-104, 1970.
3. Chen, C. J. and H. C. Chen, ”The Finite-Analytic Metheod”, Iowa Institute of Hydraulic Research, The University of Iowa., ⅡHR Report 232-Ⅳ., 1982.
4. Chen, H. C. and V. C. Patel, “Laminar Flow at the Trailing Edge of a Flat Plate”, AIAA J., Vol. 25, pp. 920-928, 1987.
5. Dean, R. G. and R. A. Dalrymple, ”Water Wave Mechanics for Engineers and Scientists”, Prentice-Hall, Englewood Cliffs, N.J., 1984.
6. Dong, C. M. and C. J. Huang, “Generation and Propagation of Water Waves in a Two-Dimensional Numerical Viscous Wave Flume”, J. Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 130, pp. 143-153, 2004.
7. Goda, Y., “Travelling secondary wave crests in wave channels”, Rep. No. 13, Port & Harbor Res. Inst., pp. 32-38, 1967.
8. Goring, D. and F. Raichlen, “The Generation of Long Waves in the Laboratory”, 17th Coastal Eng. Conf., ASCE, pp. 763-783, 1980.
9. Grilli, S. T. and J. Horrillo, “Numerical Generation and Absorption of Fully Nonlinear Periodic Waves”, J. Eng. Mech., Vol. 123, pp. 1060-1069, 1997. .
10. Havelock, T. H., “Forced Surface Wave on Water”, Philosophical Magazine, Series 7, Vol. 8, pp. 569-576, 1929.
11. Harlow, F. H. and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface”, Phys. Fluids, Vol. 8, pp. 2182-2189,1965.
12. Huang, C.J., Zhang, E.C., and Lee, J.F., ”Nonlinear Viscous Wavefields Generated by a Piston-Type Wavemaker”, Proc.5th. Int. Offshore and Polar Eng. Conf. Vol III , pp. 34-41, 1995.
13. Huang, C.J.,Zhang, E.C., and Lee, J.F., ”Numerical Simulation of NonlinearViscous Wavefields Generated by a Piston-Type Wavemaker”, J. Eng. Mech., Vol. 124, No. 10, pp. 1110-1120, 1998.
14. Hudspeth, R. T., J. W. Leonard and M. C. Chen, “Design Curves for Hinged Wave Makers: Part I Theory; Part II Experiments”, J. Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 107, pp. 533-574, 1981.
15. Isobe, M., “Calculation and Application of First-Order Cnoidal Wave Theory,” Coastal Eng., Vol. 9, pp. 309-325, 1985.
16. Jonsson, I.G., “Anew Approach to Oscillatory Rough Turbulent Boundary Layers,” Ocean Eng., pp. 109-152, 1980.
17. Lin, C.Y. and C.J. Huang, “Decomposition of Incident and Reflected Higher Harmonic Waves Using Four Wave Gagues”, Coastal Eng. Vol. 51, pp. 395-406, 2004.
18. Madsen, O. S., “On the Generation of Long Waves,” J. Geophys. Res.,Vol. 76, pp. 8672-8683, 1971.
19. Mizuguchi, M., “Second-order Solution of Laminar Boundary Layer Flow under Wave”, Costal Eng. In Japan, Vol.30, pp. 9-18, 1987.
20. Ohyama, T. and K. Nadaoka, “Development of a Numerical Wave Tank for Analysis of Nonlinear and Irregular Wave Field”, Fluid Dynamics Research, Vol.8 pp. 231-251, 1991.
21. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill Inc., New York, N.Y., 1980.
22. Sorensen, R.M., ”Basic Wave Mechanics: For Castal and Ocean Engineers”, John Wiley Sons, Inc., 1993.
23. Tang, C.J., Patel, V.C., and Landweber, L., ”Viscous Effects on Propogation and Reflection of Solitary Waves in Shallow Channels”, J. Comput. Phys., Vol. 88, No. 1, pp. 86-113, 1990.
24. Tanaka, H., H. Yamaji, A. Sana and N. Shuto, “A New Generation Method of Asymmetric Oscillatory Flow,” Proc. JSCE, Vol. 565, No. II-39, pp. 111-118, 1997.
25. Tanaka, H., B. M. Sumer and C. Lodahl, “Theoretical and Experimental Investigation on Laminar Boundary Layers under Cnoidal Wave Motion,” Coastal Eng. J., Vol. 40, pp. 81-98, 1998.
26. Ursell, F., R. G. Dean and Y. S. Yu, “Forced Small-amplitude Water Waves: A Comparison of Theory and Experiment,” J. Fluid Mech., Vol. 7, pp. 32-53, 1960.
27. 林呈、黃煌煇, ”波動淺化過程底部邊界層流場之實驗研究”,中華民國力學期刊, 67-76頁,1989.
28. 黃清哲、李兆芳、張恩誠, ”平板單向移動所形成的自由液面及流場”,中華民國第十六屆海洋工程研討會論文集, B288-B309頁,1994.