簡易檢索 / 詳目顯示

研究生: 張峰銘
Chang, Feng-Ming
論文名稱: 以多光學方法分析氧化鋅及矽鍺奈米結構之化學組態與結構變遷
Analyzing the Structural Evolution and Chemical States of ZnO and SiGe Nanostructures by Multi-Optical Methods
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 153
中文關鍵詞: 多光學方法奈米結構二次諧波X光光電子能譜光激發螢光光譜拉曼光譜氧化鋅硼摻雜矽硼摻雜矽鍺
外文關鍵詞: Multi–optical methods, Nanostructures, Second harmonic generation, X–ray photoelectron spectroscopy, Photoluminescence, Raman spectroscopy, ZnO, B–doped Si, B–doped SiGe
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物半導體因其物理特性如:能隙、光學反饋等而被廣泛應用於學術及工業領域。其奈米結構在近年更被大量使用於光電、感測之研究中。對奈米結構而言,電性以及表面形貌的量測可探測的物理現象相對光學量測較少,如結構變遷及化學態的轉換。故光學量測常為奈米結構物理化學性質之主要量測方法。然而當尺度縮小,體效應隨之降低,表面效應相對增大,使得光學量測也面臨瓶頸。奈米結構表面之物理特性如:位能障等皆與體內不同,導致表面與體的電子組態、原子結構經後處理後有所不同。因此,光學量測之結果隨表面效應增強而不易辨別表面貢獻及體貢獻,進而使物理模型含糊。再者,化學態之量測結果也因此而無法精確定位。綜上所述,光學量測之探測深度越顯重要。此研究引入多光學方法,藉由組合各工具所得資訊,考量其探測深度,以建立微觀動態模型。多光學方法對奈米結構具高度適應性,配合樣品需求選擇合適之光學量測,我們將研究其應用在氧化鋅、硼摻雜矽及硼摻雜矽鍺三種材料,並建立其熱處理的動態模型。氧化鋅奈米結構中,藉由溫度掃描退火處理,在多種深度製造多種表面狀態以驗證多光學方法對探測深度之精準度;同時以實驗方法探究缺陷之遷移能障並且建立退火造成的遷移模型;另一方面,利用高溫真空退火,完成自組成氧化鋅奈米柱之表面狀態規一化;並定義氧分子在退火處理中,不僅能修復氧空缺,同時亦在表面製造新的缺陷;氧氣在氧化鋅薄膜表面之物理、化學吸附亦為本研究的一大重點,我們發現藉由脈衝雷射及紫外光照射,可引發氧分子的物理及化學脫附。此發現更進一步使用臭氧–紫外光法對表面改質,以驗證表面品質與吸附比例之關係。在硼摻雜矽薄膜研究中,多光學方法因其探測深度的優勢而提供比傳統量測方式更精確之表面品質鑑定,並確立高能量離子佈植之最佳離子束電流;在硼摻雜矽鍺薄膜研究中,多光學方法提供良好的品質鑑定,並驗證硼除了提供載子,同時也參與矽鍺結構變遷;適量的硼可穩定結構,避免鍺聚集、硼堆疊等缺陷產生。我們相信,當電子元件的尺度持續縮小,除製程技術需求增加以外,檢測能力也須同步提升。本研究展現了多光學方法的高度適應性及實用性,尤其對於樣品表面探測深度的高解析能力更是其優勢,我們認為對於新一代奈米結構的物理化學特性探測,多光學方法可提供重要貢獻。

    Metal oxide semiconductors are widely studied in the field of academy and the industry due to the variant physical properties such as the band gap and the optical response. Their nanostructures are widely applied on photonics and sensors in the recent years. Since the measurements of the electric properties and the TEM provide less information about the structural evolution and the variation of chemical states, the optical measurements are more suitable and often applied on physical and chemical properties of metal oxide semiconductors nanostructures. However, when the structure scales down, the surface effect is relatively enhanced so that the obstacles occur. For example, the migration energy barrier is different between the surface and bulk region. It becomes difficult to separate their contributions, which would lead to the confusion of the physical characteristics. Furthermore, the chemical interaction become not easy to distinguish between surface and bulk region. As the result, the depth–resolved optical measurements is the crucial and key approach. In this thesis, multi–optical methods, which combine the optical analyses with proper depth–resolution and described the dynamics, are proposed and demonstrated. The multi–optical methods show high adaptability by choosing suitable optical measurements for ZnO, B–doped Si (BS), and B–doped SiGe (BSG) nanostructures. In the ZnO nanorods (ZNRs), by scanning the annealing temperature and duration, the depth–dependent surface states were generated in different depth in order to demonstrate the resolution of optical probing depth. The migration energy barriers were approached by the experimental methods; on the other hand, by the high temperature annealing treatments in the vacuum, we accomplished the normalization of ZNR surface. The extrinsic oxygen molecules not only repaired the vacancies but also generated additional defects on ZNR surface; The physical and chemical oxygen adsorption are key issues to study in our research as well. By using the pulsed laser and UVA irradiation, the physical and chemical desorption can be induced. Namely, the physical and chemical adsorption could be identified and separated in the measured optical signals. Furthermore, the UVC–ozone method was applied to modify the ZnO surface so that the correlation between the surface composition and the oxide adsorption was verified. In the BS thin film, the multi–optical methods provided more surface sensitive analyses than the traditional measurements due to the limitation of optical penetration depth. The optima conditions of beam currents during the implantation processes were determined as well. In the BSG thin films, the multi–optical methods verified that the B atoms not only provided the carriers but also participated the structural evolution. When the semiconductor nanostructure scales down, not only the fabrication technology need to be improved, but also the technique of surface characterization shall also be promoted. In this thesis, the multi–optical methods demonstrate high adaptability, practicality, and the advantages of the depth–resolution. We believe that the multi–optical methods will play an important role in the development of next generation of semiconductor nanostructures.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement V Contents VI Table List IX Figure List X Chapter 1 Introduction 1 1.1 Overview 1 1.2 The multi–optical methods 2 1.3 The application on ZnO, Si, and SiGe 3 1.4 Summary 5 Chapter 2 The physical and optical properties of ZnO and SiGe nanostructures 6 2.1 Zinc oxide (ZnO) 6 2.2 Silicon Germanium (SiGe) 12 Chapter 3 The multi–optical methods 15 3.1 X-ray photoelectron spectroscopy (XPS) 16 3.2 Photoluminescence (PL) 20 3.3 Raman spectroscopy 23 3.4 Second Harmonic Generation (SHG) 25 Chapter 4 The experimental setup 30 4.1 The RSHG system 30 4.2 The RF-magnetron Sputtering Integrated System with RSHG measurements 31 4.3 The Raman spectroscopy 33 4.4 The synchrotron sourced XPS 34 Chapter 5 The migration energy barriers of intrinsic defects in the self–assembly ZnO nanorods and the role of oxygen gaseous molecules during the post annealing treatments 36 5.0 Abstract 36 5.1 The migration energy barriers of the intrinsic defects in the self-assembly ZnO nanorods 37 5.2 Experimental section 38 5.3 Results and Discussion 39 5.4 Summary 54 5.5 The strong correlation between the optical properties and the defects of SA-ZNRs 54 5.6 Experimental section 56 5.7 Results and Discussion 57 5.8 Summary 71 Chapter 6 In–situ inspecting the discrepancy between oxygen physical and chemical adsorption on ZnO thin film with second harmonic generation 73 6.0 Abstract 73 6.1 Introduction 74 6.2 Theory 77 6.3 Experimental section 79 6.4 Results and Discussion 82 6.5 Summary 92 Chapter 7 Damage and annealing recovery of Boron–implanted ultra–shallow junction: the correlation between beam current and surface configuration 96 7.0 Abstract 96 7.1 Introduction 96 7.2 Experimental section 98 7.3 Results and Discussion 99 7.4 Summary 111 Chapter 8 Analyzing the structural evolution of in–situ Boron–doped SiGe ultrathin film by multi–optical methods 113 8.0 Abstract 113 8.1 Introduction 114 8.2 Experimental section 115 8.3 Results and Discussion 116 8.4 Summary 135 Chapter 9 Conclusion 137 References 140 List of Publication 152

    [1] A. Janotti, and C. G. Van de Walle, Native point defects in ZnO, Phys. Rev. B 76(16), 165202 (2007).
    [2] P. Gorai, E. Ertekin, and E. G. Seebauer, Surface–assisted defect engineering of point defects in ZnO, Appl. Phys. Lett. 108(24), 241603 (2016).
    [3] H. Ji, W. Zeng, and Y. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review, Nanoscale 11(47), 22664–22684 (2019).
    [4] S. V. Andersen, V. Vandalon, R. H. E. C. Bosch, B. W. H. van de Loo, K. Pedersen, and W. M. M. Kessels, Interaction between O2 and ZnO films probed by time–dependent second–harmonic generation, Appl. Phys. Lett. 104(5), 051602 (2014).
    [5] 蔣曉白, 半導體積體電路生產技術從摻雜技術–離子佈植 (Ion Implantation) 談起, 國家奈米元件實驗室奈米通訊, 20(4), 28–31 (2013).
    [6] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, Strained Si, SiGe, and Ge channels for high–mobility metal–oxide–semiconductor field–effect transistors, J. Appl. Phys. 97(1), 1 (2005).
    [7] F. M. Chang, Z. Z. Wu, J. H. Huang, W. T. Chen, S. Brahma, and K. Y. Lo, Migration Energy Barriers for the Surface and Bulk of Self–Assembly ZnO Nanorods. Nanomaterials 8(10), 811 (2018).
    [8] F. M. Chang, Z. Z. Wu, Y. Chen, T. Y. Yen, Y. H. Huang, L. Y. Chong, S. K. JangJian, F. Y. Lee, Y. M. Chang, and K. Y. Lo, Structural evolution of in situ boron–doped SiGe ultrathin film analyzed by multi–optical methods. Nanotechnology 31(27), 275702 (2020).
    [9] B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. today 15(1–2), 16–25 (2012).
    [10] E. C. Lin, J. Fang, S. C. Park, F. W. Johnson, and H. O. Jacobs, Effective localized collection and identification of airborne species through electrodynamic precipitation and SERS–based detection, Nat. comm. 4(1), 1–8 (2013).
    [11] D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, Highly uniform and reproducible surface–enhanced Raman scattering from DNA–tailorable nanoparticles with 1–nm interior gap, Nat. nanotechnology 6(7), 452–460 (2011).
    [12] F. M. Chang, S. Brahma, J. H. Huang, Z. Z. Wu, and K. Y. Lo, Strong correlation between optical properties and mechanism in deficiency of normalized self–assembly ZnO nanorods, Sci. rep. 9(1), 1–9 (2019).
    [13] R. Xie, T. Sekiguchi, T. Ishigaki, N. Ohashi, D. Li, D. Yang, B. Liu, Y. Bando, Enhancement and patterning of ultraviolet emission in ZnO with an electron beam, Appl. Phys. Lett. 88, 134103 (2006).
    [14] A. Pimentel, D. Nunes, P. Duarte, J. Rodrigues, F. M. Costa, T. Monteiro, R. Martins, E. Fortunato, Synthesis of long ZnO nanorods under microwave irradiation or conventional heating, J. Phys. Chem. C 118, 14629–14639 (2014).
    [15] N. F. M. N. Cabrera, N. F. Mott, Theory of the oxidation of metals, Rep. Prog. Phys. 12, 163 (1949).
    [16] G. Litrico, P. Proulx, J. B. Gouriet, P. Rambaud, Controlled oxidation of aluminum nanoparticles, Adv. Powder Technol. 26, 1–7 (2015).
    [17] G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids 3, 121 (1957).
    [18] J. L. Lyons, J. B. Varley, D. Steiauf, A. Janotti, C. G. Van de Walle, First–principles characterization of native–defect–related optical transitions in ZnO, J. Appl. Phys. 122, 035704 (2017).
    [19] V. S. Bhati, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Efficient hydrogen sensor based on Ni–doped ZnO nanostructures by RF sputtering, Sens. Actuators B Chem. 255, 588–597 (2018).
    [20] J. K. Lee et al. Ultraintense UV emission from ZnO–sheathed ZnS nanorods, Sci. Rep. 7(1), 13034 (2017).
    [21] W. Wang, T. Ai, and Q. Yu, Electrical and photocatalytic properties of boron–doped ZnO nanostructure grown on PET–ITO flexible substrates by hydrothermal method, Sci. Rep. 7, 42615 (2017).
    [22] Y. F. Wang, Origin of magnetic properties in carbon implanted ZnO nanowires, Sci. Rep. 8(1), 7758 (2018).
    [23] X. Zong, and R. Zhu, Zinc oxide nanorod field effect transistor for long–time cellular force measurement, Sci. Rep. 7, 43661 (2017).
    [24] T. Ozel, et al. Electrochemical Deposition of Conformal and Functional Layers on High Aspect Ratio Silicon Micro/Nanowires, Nano Lett. 17, 4502–4507 (2017).
    [25] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen deficient ZnO films, Appl. Phys. Lett. 78, 2285–2287 (2001).
    [26] Y. Zhang, J. Nie, J. M. Chan, and J. Luo, Probing the densification mechanisms during flash sintering of ZnO, Acta Materialia 125, 465–475 (2017).
    [27] L. Wu, Y. Wu, X. Pan, and F. Kong, Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property, Opt. Mater. 28, 418–422 (2006).
    [28] C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, Enhanced luminescent and electrical properties of hydrogen–plasma ZnO nanorods grown on wafer–scale flexible substrates, Appl. Phys. Lett. 86, 183103 (2005).
    [29] J. Zhou, et al. Photoluminescence of ZnO nanoparticles prepared by a novel gel–template combustion process, J. Lumin. 119–120, 248–252 (2006).
    [30] Y. R. Jang, K. H. Yoo, and S. M. Park, Rapid thermal annealing of ZnO thin films grown at room temperature, J. Vac. Sci. Technol. A 28(2), 216–219 (2010).
    [31] Y. Zhang, et al. Effect of annealing atmosphere on the photoluminescence of ZnO nanospheres, Appl. Surf. Sci. 255, 4801–4805 (2009).
    [32] A. Kushwaha, H. Kalita, and M. Aslam, Effect of Oxygen Annealing on the Surface Defects and Photoconductivity of Vertically Aligned ZnO Nanowire Array, World Academy of Science, Engineering and Technology 7, 258–263 (2013).
    [33] K. S. Babu, A. R. Reddy, C. Sujatha, K. V. G. Reddy, A. N. Mallika, Annealing effects on photoluminescence of ZnO nanoparticles, Mater. Lett. 110, 10–12 (2013).
    [34] L. Cui, et al. Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0 0 0 1) substrates by magnetron sputtering, Appl. Surf. Sci. 258, 2479–2485 (2012).
    [35] B. Ruqia, K. M. Nam, H. Lee, G. Lee, and S. I. Choi, Facile synthesis of highly crystalline ZnO nanorods with controlled aspect ratios and their optical properties, CrystEngComm. 19(11), 1454–1458 (2017).
    [36] N. H. Moreira, B. Aradi, and A. L. T. F. da Rosa, Native defects in ZnO nanowires: atomic relaxations, relative stability, and defect healing with organic acids, J. Phys. Chem. C 114, 18860–18865 (2010).
    [37] C. Ton–That, L. Weston, and M. R. Phillips, Characteristics of point defects in the green luminescence from Zn–and O–rich ZnO, Phys. Rev. B 86, 115205 (2012).
    [38] F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Defect energetics in ZnO: A hybrid Hartree–Fock density functional study, Phys. Rev. B 77, 245202 (2008).
    [39] H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3− x, Nat. Mater. 16, 454 (2017).
    [40] L. Ma, S. Chen, Z. Pei, H. Li, Z. Wang, Z. Liu, Z. Tang, J. A. Zapien, C. Zhi, Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies–rich cobalt oxide, ACS Nano 12, 8597 (2018).
    [41] D. Schweke, Y. Mordehovitz, M. Halabi, L. Shelly, S. Hayun, Defect chemistry of oxides for energy applications, Adv. Mater. 30, 1706300 (2018).
    [42] Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Oxygen‐Vacancy and Surface Modulation of Ultrathin Nickel Cobaltite Nanosheets as a High‐Energy Cathode for Advanced Zn‐Ion Batteries, Adv. Mater. 30, 1802396 (2018).
    [43] S. Brahma, C. W. Yang, C. H. Wu, F. M. Chang, T. J. Wu, C. S. Huang, K. Y. Lo, The optical response of ZnO nanorods induced by oxygen chemisorption and desorption, Sens. and Actuators B: Chem. 259, 900 (2018).
    [44] S. F. Duan et al., Unraveling the Impact of Electrochemically Created Oxygen Vacancies on the Performance of ZnO Nanowire Photoanodes, ACS Sustainable Chem. Eng. 7, 18165 (2019).
    [45] M. V. Ganduglia–Pirovano, A. Hofmann, J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges, Surf. Sci. Rep. 62, 219 (2007).
    [46] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom–up approach to control defect density, Nanoscale 6, 10224 (2014).
    [47] V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, (1994).
    [48] Y. Yan, M. M. Al–Jassim, and S. H. Wei, Oxygen–vacancy mediated adsorption and reactions of molecular oxygen on the ZnO (10 1¯ 0) surface, Phys. Rev. B 72, 161307R (2005).
    [49] D. Glass et al., Dynamics of Photo‐Induced Surface Oxygen Vacancies in Metal‐Oxide Semiconductors Studied Under Ambient Conditions, Adv. Sci. 6, 1901841 (2019).
    [50] S. W. Fan, A. K. Srivastava, and V. P. Dravid, UV–activated room–temperature gas sensing mechanism of polycrystalline ZnO, Appl. Phys. Lett. 95, 142106 (2009).
    [51] S. H. Hong, J. H. Mun, K. Mimura, M. Mikami, M. Uchikoshi, M. Isshiki, Effect of annealing in an O–2 atmosphere on the electrical properties of high–quality ZnO single crystals grown by seeded chemical vapor transport, J. Ceram. Process. Res. 13, 105–109 (2012).
    [52] M. A. Mahmud et al., Passivation of interstitial and vacancy mediated trap–states for efficient and stable triple–cation perovskite solar cells, J. power sources 383, 59 (2018).
    [53] S. A. Farias, E. Longo, R. Gargano, and J. B. Martins, CO 2 adsorption on polar surfaces of ZnO, J. molecular modeling 19(5), 2069–2078 (2013).
    [54] K. M. Bulanin, J. C. Lavalley, and A. A. Tsyganenko, Infrared study of ozone adsorption on TiO2 (Anatase), J. Phys. Chem. 99(25), 10294–10298 (1995).
    [55] F. M. Chang, Z. Z. Wu, Y. F. Lin, L. C. Kao, C. T. Wu, S. K. JangJian, Y. N. Chen and K. Y. Lo, Damage and annealing recovery of boron–implanted ultra–shallow junction: the correlation between beam current and surface configuration, Appl. Surf. Sci. 433, 160–165 (2018).
    [56] K. Suguro, The Prospects and Challenges in Junction Process Technology for Advanced Semiconductor Devices, 20th International Conference on Ion Implantation Technology (2014).
    [57] W. K. Chen, The VLSI Handbook, CRC Press, 2–22 (2006).
    [58] S, W. Sharma, Aderhold, K. Raman Sharma, A. J. Mayur, Thermal processing for continued scaling of semiconductor devices, 20th International Conference on Ion Implantation Technology (IIT) (2014).
    [59] S. Brahma, C. W. Liu, K. Y. Lo, The evolution of restructure and defects in the implanted Si surface: inspecting by reflective second harmonic generation, Appl. Surf. Sci. 388, 517 (2016).
    [60] Z. Zhao, N. D. Theodore, R. N. P. Vemuri, S. Das, W. Lu, S. S. Lau, T. L. Alford, Effective dopant activation via low temperature microwave annealing of ion implanted silicon, Appl. Phys. Lett. 103, 192103 (2013).
    [61] C. C. Liu, C. W. Liu, J. Y. Cheng, Y. J. Huang, K. Y. Lo, Structural evolution of implanted vicinal Si(111) during annealing via analysis of the dipole contribution, J. Appl. Phys. 110, 103520 (2011).
    [62] K. Y. Lo, Y. J. Huang, Annealing influences on phosphorous ion implanted vicinal Si(111) studied using reflective second harmonic generation, Phys. Rev. B 76, 035306 (2007).
    [63] S. L. Cheng, R. H. Lai, Y. D. Huang, H. C. Lin, Interfacial reactions and microstructural evolution of periodic Ni nanodot arrays on N2+–implanted amorphous Si substrates, Appl. Surf. Sci. 399, 313–321 (2017).
    [64] A. F. Zatsepin, D. W. Zatsepin, E. Z. Boukhvalov, N. V. Kurmaev, Sn–loss effect in a Sn–implanted a–SiO2 host–matrix after thermal annealing: a combined XPS, PL, and DFT study, Appl. Surf. Sci. 367, 320–326 (2016).
    [65] M. S. Dresselhaus, R. Kalish, Ion Implantation in Diamond, Graphite and Related Materials, Springer Science & Business Media (2013).
    [66] H. Ryssel, H. Glawischnig, Ion implantation: equipment and techniques proceedings of the fourth international conference berchtesgaden, Fed. Rep. Germany 13–17 (1982).
    [67] M. Taylor, K. Hurley, K. Lee, M. LeMere, J. Opsal, T. O’Brien, Thermal–wave measurements of high–dose ion implantation, Nucl. Instrum. Methods Phys. Res. B 55, 725–729 (1991).
    [68] J. Opsal, A. Rosencwaig, Thermal–wave depth profiling: theory, J. Appl. Phys. 53, 6 (1982).
    [69] G. Baccarani, M. R. Wordeman, and R. H. Dennard, Generalized scaling theory and its application to a 1/4 micrometer MOSFET design, IEEE Trans. Electron Devices 31(4), 452–462 (1984).
    [70] W. S. Yoo, K. Kang, T. Ueda, T. Ishigaki, Ultraviolet (UV) raman characterization of ultra–Shallow ion implanted silicon, 20th International Conference on Ion Implantation Technology (IIT) (2014).
    [71] M. Yoshimoto, M. Okutani, G. Murai, S. Tagawa, H. Saikusa, S. Takashima, W. S. Yoo, Photoluminescence characterization of defects in rapidly annealed ultra shallow junctions, ECS J. Solid State Sci. Technol. 2, 195 (2013).
    [72] P. V. D. Heide, X–ray Photoelectron Spectroscopy: An Introduction to Principles and Practices, Wiley (2011).
    [73] J. F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, Wiley (2003).
    [74] D.C. Koningsberger, R. Prins, X–ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Wiley (1988).
    [75] T. Mizoguchi, I. Tanaka, S. Yoshioka, M. Kunisu, T. Yamamoto, W.Y. Ching, First–principles calculations of ELNES and XANES of selected wide–gap materials: dependence on crystal structure and orientation, Phys. Rev. B 70, 045103 (2004).
    [76] Meijie Du, Gang Li, Preparation of silane–capped boron nanoparticles with enhanced dispersibility in hydrocarbon fuels, Fuel 194, 75–82 (2017).
    [77] B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two–dimensional boron sheets, Nat. Chem. 8, 563–568 (2016).
    [78] A. F. Vyatkin, Yu. A. Agafonov, V. I. Zinenko, The features of cold boron implantation in silicon, 20th International Conference on Ion Implantation Technology (IIT), (2014).
    [79] S. H. Lee, et al., Improvement of the short channel effect in PMOSFETs using cold implantation, Mater. Res. Bull. 82, 31 (2016).
    [80] T. Ahmed, H. Sakib, and S. Subrina, SiGe/AsSb bilayer heterostructures: structural characteristics and tunable electronic properties, Nanotechnology 31, 035701 (2019).
    [81] S. J. Choi, K. I. M. Il–Hwan, J. S. Park, T. H. Shim, and J. G. Park, Dislocation sink annihilating threading dislocations in strain–relaxed Si1–xGex layer, Nanotechnology 31, 12LT01 (2019).
    [82] H. Liu, G. Han, Y. Liu, X. Tang, J. Yang, and Y. Hao, High mobility Ge pMOSFETs with amorphous Si passivation: impact of surface orientation, Nanoscale Res. Lett. 14, 15 (2019).
    [83] G. Wang, Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 Nm CMOS Technology Node and Beyond, Singapore: Springer Nature, (2019).
    [84] L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, Determination of raman phonon strain shift coefficient of strained silicon and strained SiGe, Jpn. J. Appl. Phys. 44, 7922 (2005).
    [85] Y. W. Lan, P. C. Chen, Y. Y. Lin, M. Y. Li, L. J. Li, Y. L. Tu, F. L. Yang, M. C. Chen, and K. S. Li, Scalable fabrication of a complementary logic inverter based on MoS 2 fin–shaped field effect transistors, Nanoscale Horiz. 4, 683–8 (2019).
    [86] O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, Design of tunneling field–effect transistors using strained–silicon/strained–germanium type–II staggered heterojunctions, IEEE Electron Device Lett. 29, 1074–7 (2008).
    [87] Y. C. Yeo, Q. Lu, T. J. King, C. Hu, T. Kawashima, M. Oishi, S. Mashiro, and J. Sakai, Enhanced performance in sub–100 nm CMOSFETs using strained epitaxial silicon–germanium, IEDM: Int. Electron Devices Meeting, Technical Digest, 753–6 (2000).
    [88] K. Prabhakaran, and T. Ogino, Oxidation of Ge (100) and Ge (111) surfaces: an UPS and XPS study, Surf. Sci. 325, 263–71 (1995).
    [89] A. Carr, B. Peethala, M. Raymond, P. Adusumilli, V. Kamineni, C. Niu, A. Arceo De La Pena, D. F. Canaperi, and S. Siddiqui, Impact of surface preparation for n–type Si: P and p–type SiGe: B semiconductors on low resistance silicide contacts, Microelectron. Eng. 173, 22–26 (2017).
    [90] H. Chen, Y. K. Li, C. S. Peng, H. F. Liu, Y. L. Liu, Q. Huang, J. M. Zhou, and Q. K. Xue, Crosshatching on a SiGe film grown on a Si (001) substrate studied by Raman mapping and atomic force microscopy, Phys. Rev. B 65, 233303 (2002).
    [91] T. A. Langdo et al, SiGe–free strained Si on insulator by wafer bonding and layer transfer, Appl. Phys. Lett. 82, 4256–8 (2003).
    [92] O. Pag`es, J. Souhabi, V. J. B. Torres, A. V. Postnikov, and K. C. Rustagi, Re–examination of the SiGe Raman spectra: percolation/one–dimensional–cluster scheme and ab initio calculations, Phys. Rev. B 86, 045201 (2012).
    [93] M. Holtz, W. M. Duncan, S. Zollner, and R. Liu, Visible and ultraviolet Raman scattering studies of Si 1− x Ge x alloys, J. Phys. D: Appl. Phys. 88, 2523–8 (2000).
    [94] D. J. Bottomley, G. Lüpke, M. L. Ledgerwood, X. Q. Zhou, and H. M. Van Driel, Second harmonic generation from Si m Ge n superlattices, Appl. Phys. Lett. 63, 2324–6 (1993).
    [95] C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, Defect–enhanced second–harmonic generation in (Si m Ge n) p superlattices, Appl. Phys. Lett. 72, 2072–4 (1998).
    [96] M. Bertocchi, E. Luppi, E. Degoli, V. V´eniard, and S. Ossicini, Defects and strain enhancements of second–harmonic generation in Si/Ge superlattices, J. Chem. Phys. 140, 214705 (2014).
    [97] E. Bussmann et al, Atomic–layer doping of SiGe heterostructures for atomic–precision donor devices, Phys. Rev. Mater. 2, 066004 (2018).
    [98] V. Kalimuthu, P. Kumar, M. Kumar, and S. Rath, Growth mechanism and optical properties of Ge nanocrystals embedded in a GeOx matrix, Appl. Phys. A 124, 712 (2018).
    [99] V. A. Volodin, G. K. Krivyakin, G. D. Ivlev, S. L. Prokopyev, S. V. Gusakova, and A. A. Popov, Crystallization of amorphous germanium films and multilayer a–Ge/a–Si structures upon exposure to nanosecond laser radiation, Semiconductors 53, 400–5 (2019).
    [100] H. J. Osten, H. P. Zeindl, and E. Bugiel, Considerations about the critical thickness for pseudomorphic Si1–xGex growth on Si (001), J. Crystal Growth 143(3–4), 194–199 (1994).
    [101] E. M. Rehder, C. K. Inoki, T. S. Kuan, and T. F. Kuech, SiGe relaxation on silicon–on–insulator substrates: An experimental and modeling study, J. Appl. Phys. 94(12), 7892–7903 (2003).
    [102] V. Magidson and R. Beserman, Fano–type interference in the Raman spectrum of photoexcited Si, Phys. Rev. B 66, 195206 (2002).
    [103] B. G. Burke, J. Chan, K. A. Williams, Z. Wu, A. A. Puretzky, and D. B. Geohegan, Raman study of Fano interference in p‐type doped silicon, J. Raman Spectrosc. 41, 1759 (2010).

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE