| 研究生: |
周孟琦 Chou, Meng-Chi |
|---|---|
| 論文名稱: |
三氯乙烯在土壤之吸附反應及共代謝生物降解之研究 The adsorption of TCE in soils and cometabolism biodegradation |
| 指導教授: |
高銘木
Kao, Ming-Muh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 三氯乙烯 、共代謝 、甲苯 、吸附 、泥漿法 |
| 外文關鍵詞: | adsorption, slurry reactor, toluene, cometabolism, trichloroethylene |
| 相關次數: | 點閱:122 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在瞭解含高有機質、低有機質含量土壤對三氯乙烯及甲苯之吸附行為,並探討在泥漿環境中植種純菌(甲苯分解菌,T1菌)與現地微生物降解甲苯及共代謝三氯乙烯之情形。
吸附試驗方面,研究結果顯示以高有機質含量的梅山土壤對三氯乙烯及甲苯之吸附能力較佳,達吸附平衡時,其對三氯乙烯(10~30mg/L)及甲苯(5~35mg/L)之吸附率範圍分別為16~23%及11~34%。此外,在Freundlich等溫吸附模式中,等溫吸附線的線性皆差,可知台南土壤與梅山土壤吸附甲苯與三氯乙烯的能力皆不佳。
採用泥漿法共代謝三氯乙烯之試驗中,植種甲苯分解菌確實可提升甲苯共代謝三氯乙烯之效率及降低三氯乙烯殘留率。當甲苯及三氯乙烯濃度分別為700μg / g-soil 及25μg / g-soil時,植種組與未植種組之甲苯共代謝效率分別為0.036μg-TCE/μg-toluene、0.018μg-TCE/μg-toluene;植種組與未植種組的三氯乙烯殘餘率則分別為0%、49%。此外,藉由低濃度甲苯(350μg / g-soil)重複添加的方式降解三氯乙烯(25μg / g-soil),植種組之甲苯共代謝三氯乙烯效率可提升至0.071μg-TCE/μg-toluene,且三氯乙烯及甲苯皆可被完全降解。因此,在以甲苯共代謝三氯乙烯時,重複添加低濃度甲苯為一可行的方式。
The main objective of this study is to understand the adsorption capacity of trichloroethylene(TCE) and toluene by the different organic matter content soils. The biodegradation of toluene and TCE by toluene degrading bacterium T1 strain and indigenous microorganisms in the slurry environment were also evaluated.
For the adsorption experiments, the results show that the Meishan soil with high organic matter content has better adsorption capacity of TCE and toluene. When achieve the adsorptive equilibrium, the ranges of adsorption percentage for TCE(10~30mg/L) and toluene(5~35mg/L) are 16~23% and 11~34%, respectively. Besides, the poor linear regression of Freundlich adsorption isotherm shows that the adsorption capacity of TCE and toluene by Tainan and Meishan soil are very poor.
For the TCE cometabolism slurry experiments, seeding toluene degrading bacterium significantly increased the efficiency of toluene cometabolic TCE and the removal efficiency of TCE. When toluene and TCE concentration at 700μg/g-soil and 25μg/g-soil, the efficiency of toluene cometabolic TCE for seeding and nonseeding toluene degrading bacterium T1 strain are 0.036 and 0.018μg-TCE/μg-toluene, respectively. The residual amount of TCE are 0% and 49%, respectively. In addition, when duplex addition 350μg/g-soil of toluene, the efficiency of toluene cometabolic TCE(25μg/g-soil) for seeding toluene degrading bacterium T1 strain can be promoted to 0.071μg-TCE/μg-toluene, TCE and toluene can be completely degraded. Therefore, for the economic and efficient point of view, the duplex addition low concentration toluene is a particle method.
中華土壤肥料學會主編,「土壤分析手冊」,台北,1993。
王一雄、陳尊賢、李達源,「土壤污染學」,國立空中大學,台北,1995。
王一雄、陳尊賢、李達源,「土壤資源利用與保育」,國立空中大學,台北,2001。
王銀波,「土壤污染區整治之準則及考慮」,第五屆土壤污染防治研討會論文集,第17-18頁,1997。
中華民國環境工程學會印行,「環境微生物」,台北,1997。
台灣糖業研究所化驗服務中心,「土壤肥力測定方法」,1993。
古晏菁,「土壤污染整治技術介紹」,工業污染防治報導,第140期,第3-5頁,1999。
史盟秀,「BTEX在幾種台灣主要土壤中之吸附與降解」,碩士論文,國立屏東科技大學環境工程與科學研究所,屏東,2001。
江美幸,「甲烷分解菌及苯環類分解菌共代謝三氯乙烯之比較」,碩士論文,國立中興大學環境工程研究所,台中,1995。
行政院勞工委員會,「物質安全資料表及參考範例」,1997。
行政院環境保護署,網站名稱http://www.epa.gov.tw。
行政院環境保護署,「土壤污染評估技術規範之研究計畫」,EPA-89-UIE1-03-1001,2000。
李茂山,「受2,4-二氯酚、三氯乙烯污染土壤之生物復育」,碩士論文,國立中興大學環境工程學研究所,台中,1998。
車明道,「土壤受氯化碳氫化合物污染整治技術與問題評析」,第六屆土壤污染防治研討會—受有機污染物污染之整治復育技術論文集,第61-95頁,1999。
李俊福、黃慧貞,「土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究」,第二十六屆廢水處理技術研討會論文集,section 1-152,2001。
林培欣,「土壤氣體偵測技術在石化污染場址之應用」,第四屆土壤污染防治研討會論文集,第235-252頁,1993。
林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程學研究所,台中,1994。
陳致谷、張添晉,「土壤復育工程技術」,工業污染防治,第45期,第43-65頁,1993。
陳致谷、張添晉,「土壤生物復育技術之應用與展望」,工業污染防治,第53期,第113-138頁,1995。
張萬權,「土壤污染之微生物復育法」,工業污染防治,第54期,第116-126頁,1995。
張鈞凱、李志源、李芳胤、廖秋榮,「酚氧化菌在泥漿中分解三氯乙烯之研究」,第十三屆廢棄物處理技術研討會論文集,第253-259頁,1998。
楊迪光,「相對濕度對土壤吸附揮發性有機物機制之影響」,碩士論文,國立台灣大學環境工程研究所,台北,1998。
蔡文田、邱伸彥,「蒸氣脫脂用含氯溶劑之特性管制和污染預防」,工業污染防治,第41期,第145-160頁,1992。
蔡文田,「含氯有機溶液之毒性及新陳代謝機制」,工業污染防治﹐第43期,第175-187頁,1992。
蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第47期,第171-182頁,1993。
鄭顯榮、吳文娟,「土壤污染防治基本政策與推動方向」,第二屆土壤污染防治研討會論文集,第21-36頁,1990。
盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁,1989。
盧至人,「地下水的污染整治」,國立編譯館,台北,1997。
Brusseau, G. A., H. C. Tsien, R. S. Hanson, and L. P. Wackett, “Optimization of trichloroethylene oxidation by Methanotrophs and the use of a colorimetric assey to detect soluble methane monooxygenase activity”, Biodegradation, Vol.1, p.19-29, 1990.
Chang, H. L., and A. C. Lisa, “Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol”, Biotechnology and Bioengineering, Vol. 45, p.440-449, 1995.
Chiou, C. T., D. E. Kile, and R. L. Malcolm, “Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter”, Environ. Sci. Technol., Vol.22, No.3, p.298-303, 1988.
Chiou, C. T., and D. E. Kile, “Deviation from sorption linearity on soils of polar and nonpolar compounds at low relative concentrations”, Environ. Sci. Technol., Vol.32, No.3, p.338-343, 1998.
Compeau, G. C., W. D. Mhaffey, and L. Patras, “Full-scale bioremedration of contaminated soil and water”, Environmental Biotechnology for Waste Treatment. G. S. Sayler et al.(Eds.), New York: Plenum Press, p.91-109, 1990.
Dabrock, B., J. Riedel, J. Bertram, and G. Gottochalk, “Isopropylbenzene (cumene)-a new substrate for the isolation of trichloroethene-degrading bacteria”, Arch. Microbiol., Vol.158, p.9-13, 1992.
Ely, R. L., K. J. Williamson, M. R. Hyman, and D. J. Arp, “Cometabolism of chlorinated Solvents by nitrifying bacteria : kinetics, substrate interactions, toxicity effects, and bacterial response”, Biotechnology and Biongineering, Vol.54, p.520-534, 1997.
Ensign, S. A., M. R. Hyman, and D. J. Arp, “Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain”, Appl. Environ. Microbiol., Vol.58, No.9, p.3038-3046, 1992.
Ewers, J., W. Clemens, and H. J. Knackmuss, “Biodegradation of chloroethenes using isoprene as co-substrate”, International Symposium on Environmental biotechnology, Vol.1, Royal Flemish Society of Engineers : Ostead, Belgium, p.77-83, 1991.
Fan, S., and K. M. Scow, “Biodegradation of trichloroethylene and toluene by indigeous microbial population in soil”, Appl. Environ. Microbiol., Vol.59, No.6, p.1911-1918, 1993.
Fogel, M. M., A. R. Taddeo, and S. Fogel, “Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture”, Appl. Environ. Microbiol., Vol.51, No.4, p.720-724, 1986.
Folsom, B. R., P. J. Chapman, and P. H. Pritchard, “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4 : kinetics and interactions between substrate”, Appl. Environ. Microbiol., Vol.56, No.5, p.1279-1285, 1990.
Fox, B. G., J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, “Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications”, Biochemistry, Vol.29, p.6419-6427, 1990.
Fries, M. R., L. J. Forney, and J. M. Tiedje, “Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred”, Appl. Environ. Microbiol., Vol.63, No.4, p.1523-1530, 1997.
Grathwohl, P., “Influence of organic matter from soils and sediments from various origicns on the sorption of some chlorinated aliphatic hydrocarbons : implications on Koc correlations”, Environ. Sci. Technol., Vol.24, No.11, p.1687-1693, 1990.
Hopkins, G. D., L. Semprini, and P. L. McCarty, “Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms”, Appl. Environ. Microbiol., Vol.59, No.7, p.2277-2285, 1993.
Large, P. J., “Methylotrophy and methanogenesis”, American Society for Microbiology, Washington, DC, p.25-26, 1983.
Leahy, J. G., and R. R. Colwell, “Microbial degradation hydrocarbons in the environment”, Microbiological Reviews, Vol.54, p.305-315, 1990.
Lisa, A. C., and P. L. McCarty, “Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells”, Appl. Environ. Microbiol., Vol.57, No.4, p.1031-1037, 1991.
Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer, “Trichloroethylene biodegradation by a methane-oxidizing bacterium”, Appl. Environ. Microbiol., Vol.54, No.4, p.951-956, 1988.
Mackenbrock, K., “Treatment of contaminated soils by a combination of suitable, proven technologies”, Contaminated soil , Vol.2, Kluwer Academic Publishers, Netherlands, 1993.
Mars, A. E., G. T. Prins, P. Wietzes, W. D. Koning, and D. B. Janssen, “Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria”, Appl. Environ. Microbiol., Vol.64, No.1, p.208-215, 1998.
McCarty, P. L., M. Reinhard, and B. E. Rittmann., “Trace organics in groundwater”, Environ. Sci. Technol., Vol.15, No.1, p.40-42, 1981.
McCarty, P. L., “Bioengineering issues related to in situ remediation of contaminated soils and groundwater”, Environ. Biotechnol., p.143-161, 1988.
Mouvet, C., B. Delphine, and A. C. Boury, “Adsorption isotherms of tri-and tetrachloroehylene by various natural solids”, J. of Hydrology, Vol.149, p.163-182, 1993.
Nelson, M. J. K., S. O. Montgomery, W. R. Mahaffey, and P. H. Pritchard, “Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway”, Appl. Environ. Microbiol., Vol.53, No.5, p.949-954, 1987.
Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt, “Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase”, Appl. Environ. Microbiol., Vol.55, No.11, p.2819-2826, 1989.
Ong, S. K., and L. W. Lion, “Mechanisms for trichloroethylene vapor sorption onto soil minerals”, J. Environ. Qual., Vol.20, p.180-188, 1991.
Palvostathis, S. G., and K. Jaglal, “Desorptive behavior of trichloroethylene in contaminated soil”, Environ. Sci. Technol., Vol.25, No.2, p.274-279, 1991.
Pignatello, J. J., and B. Xing, “Mechanisms of slow sorption of organic Chemicals to natural particles”, Environ. Sci. technol., Vol.30, No.1, p.1-11, 1996.
Rasche, M. E., M. R. Hyman, and D. J. Arp, “Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity”, Appl. Environ. Microbiol., Vol.57, No.10, p.2986-2994, 1991.
Ruiz, J., R. Bilbao, and M. B. Murillo, “Adsorption of different VOC onto soil minerals from gas phase : influence of mineral, type of VOC, and air humidity”, Environ. Sci. technol., Vol.32, No.8, p.1079-1084, 1998.
Shields, M. S., S. O. Montgomery, P. J. Chapmen, S. M. Cuskey, and P. H. Pritchard, “Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4”, Appl. Environ. Microbiol., Vol.55, No.4, p.1624-1629, 1989.
Shields, M. S., S. O. Montgomery, S. M. Cuskty, P. J. Chapman, and P. H. Pritchard, “Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene”, Appl. Environ. Microbiol., Vol.57, No.7, p.1935-1941, 1991.
Skopp, J., M. D. Jawson, and J. W. Doran, “Steady-state aerobic microbial activity as a function of soil water content”, Soil Sci. Soc. Am. J., Vol.54, p.1619-1625, 1990.
Speitel, G. E., and D. Mclay, “ Biofilm reacter for treatment of gas streams containing chlorinated solvents”, J. Envir. Engrg., Vol.119, p.658-678, 1993.
Sutfin, J. A., and D. Ramey, “In situ biological treatment of TCE-impacted soil and groundwater : demonstration results”, Environ. Prog., Vol.16, No.4, p.287-296, 1997.
Tortora G. J., B. R. Funke and C. L. Case, “Microbiology an introduction”, 5th edition, The Benjamin/Cummings Publishing Company, Inc., p.664-690, 1995.
Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hooper, “Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea”, Appl. Environ. Microbiol., Vol.56, No.4, p.1169-1171, 1990.
Vogel, T. M., and P. L. McCarty, “Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions”, Appl. Environ. Microbiol., Vol.49, No.5, p.1080-1083, 1985.
Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of halogenated aliphatic compounds”, Environ. Sci. Technol., Vol.21, No.8, p.722-736, 1987.
Wackett, L. P., and D. T. Gibson, “Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1”, Appl. Environ. Microbiol., Vol.54, No.7, p.1703-1708, 1988.
Wackett, L. P., and S. R. Householder, “Toxicity of thrichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase”, Appl. Environ. Microbiol., Vol.55, No.10, p.2723-2725, 1989.
Wackett, L. P., G. A. Brusseau, S. R. Householder, and R. S. Hanson, “Survey of microbial oxygenases : trichloroethylene degradation by propane-oxidizing bacteria”, Appl. Environ. Microbiol., Vol.55, No.11, p.2960-2964, 1989.
Weber, W. J., P. M. Mcginley, and L. E. Katz, “A distributed reactivity model for sorption by soils and sediments”, Environ. Sci. Technol., Vol.26, No.10, p.1955-1962, 1992.
Wilson, J. T., and B. H. Wilson, “Biotransformation of trichloroethene in soil”, Appl. Environ. Microbiol., Vol.49, No.1, p.242-243, 1985.
Woodhull, P. M., and D. E. Jerger, “Bioremediation using a commercial-phase biological treatment system : site-specific applications and costs”, Remediation, p353~362, 1994.
Yimu, D., and K. M. Scow, “Effect of trichloroethylene and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil”, Appl. Environ. Microbiol., Vol.60, No.10, p.2661-2665, 1994.