簡易檢索 / 詳目顯示

研究生: 陳姿蓉
Chen, Zi-Rong
論文名稱: 探討Chek2在斑馬魚早期胚胎發育的角色
Investigation the role of Chek2 during zebrafish early embryonic development
指導教授: 盧福翊
Lu, Fu-I
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 斑馬魚第二型損傷檢查點激酶初級纖毛CRISPR/Cas 9
外文關鍵詞: zebrafish, Chek2, primary cilia, CRISPR/Cas9
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Check point kinase 2 (Chek2)為第二型損傷檢查點激酶,當細胞受到外界環境的刺激時會使Chek2活化,進而調控細胞週期,使細胞週期停滯,並且修復受損的DNA。在成功大學醫學院王家義老師實驗室的先前研究中發現除了在細胞週期的調控外,Chek2也會位在mother centriole上,而mother centriole為初級纖毛形成的要素,經由細胞培養進行的體外實驗將Chek2抑制後,發現初級纖毛的生長也會受到抑制,證明Chek2為初級纖毛生長的必要條件。因此想要探討Chek2對於體內的影響為何?在本研究中,藉由斑馬魚來觀察Chek2對於胚胎發育所造成的影響。首先確定在斑馬魚早期胚胎中有Chek2基因也有表現初級纖毛,再利用antisence Morpholino (MO)和CRISPR來抑制掉斑馬魚胚胎中Chek2的表現,觀察到斑馬魚胚胎的發育會受到影響,而且初級纖毛結構也會變得不穩定。為了加強Chek2缺失對於初級纖毛生長的證據,根據先前研究表示初級纖毛可以幫助偵測細胞外界的訊息,但是根據斑馬魚胚胎中的研究結果,Chek2的缺失並不會影響Wnt、Bmp、Nodal以及Hedgehog訊號的表現。因此經由本實驗結果得知,在水生物種及哺乳類間,Chek2調控初級纖毛生長之功能的保守性。

    Checkpoint kinase 2 (Chek2) is the type II injury checkpoint kinase. When cells encounter the environmental stimulus, Chek2 will be activated and regulate the cell cycle, make the cell cycle arrest and repair damaged DNA. Therefore, Chek2 plays an important role in the regulation of cell division mechanisms. From the data of Dr. Wang’s lab in School of Medicine, National Cheng Kung University has proved that Chek2 is activated in the mother centriole, and can help the growth of primary cilia. Primary cilia is the protrusions on the cell surface, and functions that helping cells to detect the external environment stimuli and receive signals from outside to induce cell growth and differentiation. Chek2 is located on the bottom of the primary cilia and is responsible for the growth of primary cilia. However, all the data on Chek2 is from the in vitro study by using human retinal epithelial cells as a model, the function in vivo is still unknown. Therefore here explored the function of Chek2 in vivo by using zebrafish embryo as a model. First of all found that Chek2 is expressed ubiquitously during blastula and gastrula stages and mainly on the eyes and brain region at 24 hours post fertilization. Therefore, explored whether the development of eyes and the structure of primary cilia were affected by gain- or loss-of function of Chek2. Secondly, also conducted Chek2 knockout by CRISPR mutagenesis and tried to confirm the result from Chek2 knockdown. From the loss of function study it showed that the knockdown of Chek2 by morpholino resulted in the defect in eyes development and also the decrease of primary cilia growth. Finally, used Human Chek2 mRNA to rescue Chek2 knockdown zebrafish and found that the defect in eyes and the growth of primary cilia can be rescued. This rescue experiment further confirmed the Chek2 morpholino specificity. Furthermore, found Chek2 does not influence signaling pathways including Wnt, Bmp, Nodal and Hedgehog during zebrafish early embryonic development. These results suggested that the role of Chek2 might be conservative between fish and mammal that affects the primary cilia growth and the cell cycle regulation.

    中文摘要.......................................................................................................... I 英文摘要........................................................................................................ II 誌謝................................................................................................................ VI 目錄............................................................................................................... VII 表目錄............................................................................................................. X 圖目錄............................................................................................................ XI 縮寫表......................................................................................................... XIII 一、研究背景................................................................................................... 1 1-1 實驗動物斑馬魚............................................................................. 1 1-2 纖毛的介紹..................................................................................... 3 1-3 Checkpoint kinase 2(Chek2)的介紹............................................. 10 1-4 CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats)基因剔除術..................................................................... 13 1-5 研究目的....................................................................................... 14 二、材料與方法........................................................................................... 16 2-1 斑馬魚飼養及魚卵的取得........................................................... 16 2-2 RNA萃取及cDNA合成.............................................................. 17 2-3 質體構築....................................................................................... 18 2-4 勝任細胞(Competent cell)製備.................................................... 18 2-5 轉型作用(Transformation) .......................................................... 19 2-6 質體抽取與純化........................................................................... 20 2-7 mRNA合成................................................................................... 21 2-8 Morpholino(MO)配製.................................................................. 22 2-9 顯微注射(Microinjection)............................................................ 23 2-10 全胚胎原位雜交(Whole mount in situ hybridization, WISH) .... 24 2-11 免疫抗體染色............................................................................... 26 2-12 CRISPR/Cas9系統................................................................... 28 三、結果........................................................................................................ 31 3-1 Chek2在不同物種中的親緣性.................................................... 31 3-2 Chek2在斑馬魚胚胎中的表現時期及位置................................ 31 3-3 Chek2抑制後對斑馬魚胚胎的影響............................................ 32 3-4 Chek2抑制後對斑馬魚胚胎體內初級纖毛生長的影響............ 33 3-5 Chek2抑制後的拯救實驗(Rescue experiment) .......................... 34 3-6 利用CRISPR建立Chek2 knockout品系.................................... 35 3-7 Chek2的缺失對於Wnt、Bmp、Nodal以及Hedgehog訊息傳 遞的影響........................................................................................ 38 四、討論…………………............................................................................ 40 4-1 斑馬魚胚胎Chek2和初級纖毛的相關性................................... 40 4-2 Chek2 morpholino的專一性........................................................ 40 4-3 Chek2 CRISPR的17nt 及20nt gRNA之效果比較................... 41 4-4 Chek2 CRISPR target site 1和target site 2胚胎之不同表型...... 41 4-5 Chek2抑制後並不影響訊息的接收............................................ 43 4-6 初級纖毛表現的確認................................................................... 43參考文獻........................................................................................................ 45圖表................................................................................................................ 59附錄................................................................................................................ 88

    Abraham, R. T. Cell cycle checkpoint signaling through the atm and atr kinases. Genes and Development 15, 2177-2196, 2001.

    Ahn, J., Urist, M., and Prives, C. The chk2 protein kinase. DNA Repair 3, 1039-1047, 2004.

    Allison, D. C., and Ridolpho, P. Use of a trypan blue assay to measure the deoxyribonucleic acid content and radioactive labeling of viable cells. Journal of Histochemistry and Cytochemistry 28, 700-703, 1980.

    Aufderheide, K. J., Frankel, J., and Williams, N. E. Formation and positioning of surface-related structures in protozoa. Microbiology Reviews 44, 252-302, 1980.

    Avasthi, P., and Marshall, W. F. Stages of ciliogenesis and regulation of ciliary length. Differentiation 83, 30-42, 2012.

    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P. Crispr provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712, 2007.

    Bartek, J., Falck, J., and Lukas, J. Chk2 kinase-a busy messenger. Nature Reviews Molecular Cell Biology 2, 877-886, 2001.

    Beales, P., and Jackson, P. K. Cilia - the prodigal organelle. Cilia 1, 1, 2012.

    Bedell, V. M., Westcot, S. E., and Ekker, S. C. Lessons from morpholino-based screening in zebrafish. Briefings in Functional Genomics 10, 181-188, 2011.

    Bergmann, C., Fliegauf, M., Bruchle, N. O., Frank, V., Olbrich, H., Kirschner, J., Schermer, B., Schmedding, I., Kispert, A., Kranzlin, B., Nurnberg, G., Becker, C., Grimm, T., Girschick, G., Lynch, S. A., Kelehan, P., Senderek, J., Neuhaus, T. J., Stallmach, T., Zentgraf, H., Nurnberg, P., Gretz, N., Lo, C., Lienkamp, S., Schafer, T., Walz, G., Benzing, T., Zerres, K., and Omran, H. Loss of nephrocystin-3 function can cause embryonic lethality, meckel-gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. American Society of Human Genetics 82, 959-970, 2008.

    Bhat, A. Diversity and Composition of Freshwater Fishes in River Systems of Central Western Ghats, India. Environmental Biology of Fishes 68, 25-38, 2003.

    Bloodgood, R. A. Sensory reception is an attribute of both primary cilia and motile cilia. Journal of Cell Science 123, 505-509, 2010.

    Bredrup, C., Saunier, S., Oud, M. M., Fiskerstrand, T., Hoischen, A., Brackman, D., Leh, S. M., Midtbo, M., Filhol, E., Bole-Feysot, C., Nitschke, P., Gilissen, C., Haugen, O. H., Sanders, J. S., Stolte-Dijkstra, I., Mans, D. A., Steenbergen, E. J., Hamel, B. C., Matignon, M., Pfundt, R., Jeanpierre, C., Boman, H., Rodahl, E., Veltman, J. A., Knappskog, P. M., Knoers, N. V., Roepman, R., and Arts, H. H. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the ift-a gene wdr19. American Journal of Human Genetics 89, 634-643, 2011.

    Budny, B., Chen, W., Omran, H., Fliegauf, M., Tzschach, A., Wisniewska, M., Jensen, L. R., Raynaud, M., Shoichet, S. A., Badura, M., Lenzner, S., Latos-Bielenska, A., and Ropers, H. H. A novel x-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type i syndrome. Human Genetics 120, 171-178, 2006.

    Cai, Z., Chehab, N. H., and Pavletich, N. P. Structure and activation mechanism of the chk2 DNA damage checkpoint kinase. Molecular Cell 35, 818-829, 2009.

    Chaturvedi, P., Eng, W. K., Zhu, Y., Mattern, M. R., Mishra, R., Hurle, M. R., Zhang, X., Annan, R. S., Lu, Q., Faucette, L. F., Scott, G. F., Li, X., Carr, S. A., Johnson, R. K., Winkler, J. D., and Zhou, B. B. Mammalian chk2 is a downstream effector of the atm-dependent DNA damage checkpoint pathway. Oncogene 18, 4047-4054, 1999.

    Chen, T. Y. Chk2 regulates the cell cycle progression by controlling primary cilia acetylation. Master Thesis. Department of cell biology and anatomy college of medicine, Retrived from National Cheng-Kung University of Department of Cell Biology and Anatomy College of Medicine. 2015.

    Christensen, S. T., Pedersen, L. B., Schneider, L., and Satir, P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 8, 97-109, 2007.

    Corben, A. D., Nehhozina, T., Garg, K., Vallejo, C. E., and Brogi, E. Endosalpingiosis in axillary lymph nodes: A possible pitfall in the staging of patients with breast carcinoma. The American Journal of Surgical Pathology 34, 1211-1216, 2010.

    D'Angelo, A., and Franco, B. The dynamic cilium in human diseases. Pathogenetics 2, 3, 2009.

    Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., and Charpentier, E. Crispr rna maturation by trans-encoded small rna and host factor rnase iii. Nature 471, 602-607, 2011.

    Doherty, D. Joubert syndrome: Insights into brain development, cilium biology, and complex disease. Seminars in Pediatric Neurology 16, 143-154, 2009.

    Dooley, K., and Zon, L. I. Zebrafish: A model system for the study of human disease. Current Opinion in Genetics and Development 10, 252-256, 2000.

    Doxsey, S. Re-evaluating centrosome function. Nature Reviews Molecular Cell Biology 2, 688-698, 2001.

    Durocher, D., and Jackson, S. P. DNA-pk, atm and atr as sensors of DNA damage: Variations on a theme? Current Opinion in Cell Biology 13, 225-231, 2001.
    Eisen, J. S., and Smith, J. C. Controlling morpholino experiments: Don't stop making antisense. Development 135, 1735-1743, 2008.

    Ellis, J. S., and Zambon, M. C. Combined pcr-heteroduplex mobility assay for detection and differentiation of influenza a viruses from different animal species. Journal of Clinical Microbiology 39, 4097-4102, 2001.

    Elric, J., and Etienne-Manneville, S. Centrosome positioning in polarized cells: Common themes and variations. Experimental Cell Research 328, 240-248, 2014.

    Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B., and Yost, H. J. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247-1260, 2005.

    Fliegauf, M., Benzing, T., and Omran, H. When cilia go bad: Cilia defects and ciliopathies. Nature Reviews Molecular Cell Biology 8, 880-893, 2007.

    Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. Improving crispr-cas nuclease specificity using truncated guide rnas. Nature Biotechnology 32, 279-284, 2014.

    Fukasawa, K. Centrosome amplification, chromosome instability and cancer development. Cancer Letters 230, 6-19, 2005.

    Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. Cas9-crrna ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America 109, 2579-2586, 2012.

    Gerhard, G. S., Kauffman, E. J., Wang, X., Stewart, R., Moore, J. L., Kasales, C. J., Demidenko, E., and Cheng, K. C. Life spans and senescent phenotypes in two strains of zebrafish (danio rerio). Experimental Gerontology 37, 1055-1068, 2002.

    Gillies, T. E., and Cabernard, C. Cell division orientation in animals. Current Biology 21, 599- 609, 2011.

    Gluenz, E., Hoog, J. L., Smith, A. E., Dawe, H. R., Shaw, M. K., and Gull, K. Beyond 9+0: Noncanonical axoneme structures characterize sensory cilia from protists to humans. Faseb Journal 24, 3117-3121, 2010.

    Goodarzi, A. A., Block, W. D., and Lees-Miller, S. P. The role of atm and atr in DNA damage-induced cell cycle control. Progress in Cell Cycle Research 5, 393-411, 2003.

    Goetz, S. C., and Anderson, K. V. The primary cilium: A signalling centre during vertebrate development. Nature Reviews Genetics 11, 331-344, 2010.

    Gunay-Aygun, M. Liver and kidney disease in ciliopathies. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 151, 296-306, 2009.

    Hadzhiev, Y., Lele, Z., Schindler, S., Wilson, S. W., Ahlberg, P., Strahle, U., and Muller, F. Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish. Biomed Central Genomics Developmental Biology 7, 75, 2007.

    Hagenlocher, C., Walentek, P., C, M. L., Thumberger, T., and Feistel, K. Ciliogenesis and cerebrospinal fluid flow in the developing xenopus brain are regulated by foxj1. Cilia 2, 12, 2013.

    Han, Y. G., Spassky, N., Romaguera-Ros, M., Garcia-Verdugo, J. M., Aguilar, A., Schneider-Maunoury, S., and Alvarez-Buylla, A. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nature Neuroscience 11, 277-284, 2008.

    Heatwole, V. M. Tunel assay for apoptotic cells. Methods in Molecular Biology 115, 141-148, 1999.

    Hildebrandt, F., Benzing, T., and Katsanis, N. Ciliopathies. The New England Journal of Medicine 364, 1533-1543, 2011.

    Hinchcliffe, E. H., and Sluder, G. Two for two: Cdk2 and its role in centrosome doubling. Oncogene 21, 6154-6160, 2002.

    Ho, P. T., and Tucker, R. W. Centriole ciliation and cell cycle variability during g1 phase of balb/c 3t3 cells. Journal of Cellular Physiology 139, 398-406, 1989.

    Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R., and Joung, J. K. Efficient genome editing in zebrafish using a crispr-cas system. Nature Biotechnology 31, 227-229, 2013.

    Inoue, H., Nojima, H., and Okayama, H. High efficiency transformation of escherichia coli with plasmids. Gene 96, 23-28, 1990.

    Jaffe, K. M., Thiberge, S. Y., Bisher, M. E., and Burdine, R. D. Imaging cilia in zebrafish. Methods in Cell Biology 97, 415-435, 2010.

    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821, 2012.

    Kim, S., and Tsiokas, L. Cilia and cell cycle re-entry: More than a coincidence. Cell Cycle 10, 2683-2690, 2011.

    Kimmel, C. B. Genetics and early development of zebrafish. Trends in Genetics 5, 283-288, 1989.

    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253-310, 1995.

    Kimmel, C. B., Warga, R. M., and Kane, D. A. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120, 265-276, 1994.
    Kimmel, C. B., Warga, R. M., and Schilling, T. F. Origin and organization of the zebrafish fate map. Development 108, 581-594, 1990.

    Kinnamon, S. C., and Reynolds, S. D. Cell biology. Using taste to clear the air(ways). Science 325, 1081-1082, 2009.

    Kishi, S., Slack, B. E., Uchiyama, J., and Zhdanova, I. V. Zebrafish as a genetic model in biological and behavioral gerontology: Where development meets aging in vertebrates-a mini-review. Gerontology 55, 430-441, 2009.

    Kishi, S., Uchiyama, J., Baughman, A. M., Goto, T., Lin, M. C., and Tsai, S. B. The zebrafish as a vertebrate model of functional aging and very gradual senescence. Experimental Gerontology 38, 777-786, 2003.

    Kok, F. O., Shin, M., Ni, C. W., Gupta, A., Grosse, A. S., van Impel, A., Kirchmaier, B. C., Peterson-Maduro, J., Kourkoulis, G., Male, I., DeSantis, D. F., Sheppard-Tindell, S., Ebarasi, L., Betsholtz, C., Schulte-Merker, S., Wolfe, S. A., and Lawson, N. D. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell 32, 97-108, 2015.

    Kremer, H., van Wijk, E., Marker, T., Wolfrum, U., and Roepman, R. Usher syndrome: Molecular links of pathogenesis, proteins and pathways. Human Molecular Genetics 15, 262-270, 2006.

    Leeuwenhoek, A. V. Observation, communicated to the publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9 Octob. 1676 here English'd: concerning little animals by him observed in rain-well-sea and snow water; as also in water wherein pepper had lain infused. Philosophical Transactions 12, 821-831, 1677.

    Lehman, A. M., Eydoux, P., Doherty, D., Glass, I. A., Chitayat, D., Chung, B. Y., Langlois, S., Yong, S. L., Lowry, R. B., Hildebrandt, F., and Trnka, P. Co-occurrence of joubert syndrome and jeune asphyxiating thoracic dystrophy. American Journal of Medical Genetics Part A 152, 1411-1419, 2010.
    Leigh, M. W., Pittman, J. E., Carson, J. L., Ferkol, T. W., Dell, S. D., Davis, S. D., Knowles, M. R., and Zariwala, M. A. Clinical and genetic aspects of primary ciliary dyskinesia/kartagener syndrome. Genetics in Medicine 11, 473-487, 2009.

    Lekven, A. C., Thorpe, C. J., Waxman, J. S., and Moon, R. T. Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Developmental Cell 1, 103-114, 2001.

    Leung, T., Bischof, J., Soll, I., Niessing, D., Zhang, D., Ma, J., Jackle, H., and Driever, W. Bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development 130, 3639-3649, 2003.

    Lieschke, G. J., and Currie, P. D. Animal models of human disease: Zebrafish swim into view. Nature Reviews Genetics 8, 353-367, 2007.

    Lim, C. H., Chong, S. W., and Jiang, Y. J. Udu deficiency activates DNA damage checkpoint. Molecular Biology of the Cell 20, 4183-4193, 2009.

    Lu, F. I., Thisse, C., and Thisse, B. Identification and mechanism of regulation of the zebrafish dorsal determinant. Proceedings of the National Academy of Sciences of the United States of America 108, 15876-15880, 2011.

    Luck, D. J. Genetic and biochemical dissection of the eucaryotic flagellum. Journal of Cell Biology 98, 789-794, 1984.

    Lukas, C., Bartkova, J., Latella, L., Falck, J., Mailand, N., Schroeder, T., Sehested, M., Lukas, J., and Bartek, J. DNA damage-activated kinase chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Research 61, 4990-4993, 2001.

    Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., van der Oost, J., and Koonin, E. V. Evolution and classification of the crispr-cas systems. Nature Reviews Microbiology 9, 467-477, 2011.

    Malicki, J., Avanesov, A., Li, J., Yuan, S., and Sun, Z. Analysis of cilia structure and function in zebrafish. Methods in Cell Biology 101, 39-74, 2011.

    Marion, V., Stoetzel, C., Schlicht, D., Messaddeq, N., Koch, M., Flori, E., Danse, J. M., Mandel, J. L., and Dollfus, H. Transient ciliogenesis involving bardet-biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proceedings of the National Academy of Sciences of the United States of America 106, 1820-1825, 2009.

    Marshall, W. F. Basal bodies platforms for building cilia. Current Topics in Developmental Biology 85, 1-22, 2008.

    McInerney-Leo, A. M., Schmidts, M., Cortes, C. R., Leo, P. J., Gener, B., Courtney, A. D., Gardiner, B., Harris, J. A., Lu, Y., Marshall, M., Scambler, P. J., Beales, P. L., Brown, M. A., Zankl, A., Mitchison, H. M., Duncan, E. L., and Wicking, C. Short-rib polydactyly and jeune syndromes are caused by mutations in wdr60. American Society of Human Genetics 93, 515-523, 2013.

    Mitchell, D. R. The evolution of eukaryotic cilia and flagella as motile and sensory organelles. Advances in Experimental Medicine and Biology 607, 130-140, 2007.

    Moens, S., and Vanderleyden, J. Functions of bacterial flagella. Critical Reviews in Microbiology 22, 67-100, 1996.

    Moreno-Mateos, M. A., Vejnar, C. E., Beaudoin, J. D., Fernandez, J. P., Mis, E. K., Khokha, M. K., and Giraldez, A. J. Crisprscan: Designing highly efficient sgrnas for crispr-cas9 targeting in vivo. Nature Methods 12, 982-988, 2015.

    Munro, N. C., Currie, D. C., Lindsay, K. S., Ryder, T. A., Rutman, A., Dewar, A., Greenstone, M. A., Hendry, W. F., and Cole, P. J. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax 49, 684-687, 1994.

    Nasevicius, A., Larson, J., and Ekker, S. C. Distinct requirements for zebrafish angiogenesis revealed by a vegf-a morphant. Yeast 17, 294-301, 2000.

    Nogales, E., Whittaker, M., Milligan, R. A., and Downing, K. H. High-resolution model of the microtubule. Cell 96, 79-88, 1999.

    Noone, P. G., Leigh, M. W., Sannuti, A., Minnix, S. L., Carson, J. L., Hazucha, M., Zariwala, M. A., and Knowles, M. R. Primary ciliary dyskinesia: Diagnostic and phenotypic features. American Journal of Respiratory and Critical Care Medicine 169, 459-467, 2004.

    Nutu, M., Weijdegard, B., Thomas, P., Thurin-Kjellberg, A., Billig, H., and Larsson, D. G. Distribution and hormonal regulation of membrane progesterone receptors beta and gamma in ciliated epithelial cells of mouse and human fallopian tubes. Reproductive Biology and Endocrinology 7, 89, 2009.

    Palazzo, A., Ackerman, B., and Gundersen, G. G. Cell biology: Tubulin acetylation and cell motility. Nature 421, 230, 2003.

    Papon, J. F., Perrault, I., Coste, A., Louis, B., Gerard, X., Hanein, S., Fares-Taie, L., Gerber, S., Defoort-Dhellemmes, S., Vojtek, A. M., Kaplan, J., Rozet, J. M., and Escudier, E. Abnormal respiratory cilia in non-syndromic leber congenital amaurosis with cep290 mutations. Journal of Medical Genetics 47, 829-834, 2010.

    Peterson, A. G., Wang, X., and Yost, H. J. Dvr1 transfers left-right asymmetric signals from kupffer's vesicle to lateral plate mesoderm in zebrafish. Developmental Biology 382, 198-208, 2013.

    Peterson, S. M., and Freeman, J. L. Rna isolation from embryonic zebrafish and cdna synthesis for gene expression analysis. Journal of Visualized Experiments, 2009.
    Piperno, G., and Fuller, M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. Journal of Cell Biology 101, 2085-2094, 1985.

    Piperno, G., Huang, B., and Luck, D. J. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America 74, 1600-1604, 1977.

    Plotnikova, O. V., Pugacheva, E. N., and Golemis, E. A. Primary cilia and the cell cycle. Methods in Cell Biology 94, 137-160, 2009.

    Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. Genome engineering using the crispr-cas9 system. Nature Protocols 8, 2281-2308, 2013.

    Reimers, M. J., Flockton, A. R., and Tanguay, R. L. Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicology and Teratology 26, 769-781, 2004.

    Rubinstein, A. L. Zebrafish: From disease modeling to drug discovery. Current Opinion in Drug Discovery and Development 6, 218-223, 2003.

    Saggese, T., Young, A. A., Huang, C., Braeckmans, K., and McGlashan, S. R. Development of a method for the measurement of primary cilia length in 3d. Cilia 1, 11, 2012.

    Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S. J. Conservation of the chk1 checkpoint pathway in mammals: Linkage of DNA damage to cdk regulation through cdc25. Science 277, 1497-1501, 1997.

    Satir, P., and Christensen, S. T. Overview of structure and function of mammalian cilia. Annual Review of Physiology 69, 377-400, 2007.

    Satir, P., and Sleigh, M. A. The physiology of cilia and mucociliary interactions. Annual Review of Physiology 52, 137-155, 1990.

    Schier, A. F., and Talbot, W. S. Nodal signaling and the zebrafish organizer. The International Journal of Developmental Biology 45, 289-297, 2001.

    Schier, A. F., and Talbot, W. S. Molecular genetics of axis formation in zebrafish. Annual Review of Genetics 39, 561-613, 2005.

    Shah, A. S., Ben-Shahar, Y., Moninger, T. O., Kline, J. N., and Welsh, M. J. Motile cilia of human airway epithelia are chemosensory. Science 325, 1131-1134, 2009.

    Sidi, S., Sanda, T., Kennedy, R. D., Hagen, A. T., Jette, C. A., Hoffmans, R., Pascual, J., Imamura, S., Kishi, S., Amatruda, J. F., Kanki, J. P., Green, D. R., D'Andrea, A. A., and Look, A. T. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, bcl-2, and caspase-3. Cell 133, 864-877, 2008.

    Simons, M., and Mlodzik, M. Planar cell polarity signaling: From fly development to human disease. Annual Review of Genetics 42, 517-540, 2008.

    Singla, V., and Reiter, J. F. The primary cilium as the cell's antenna: Signaling at a sensory organelle. Science 313, 629-633, 2006.

    Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. Journal of Cell Science 3, 207-230, 1968.

    Summerton, J. E. Morpholino, sirna, and s-DNA compared: Impact of structure and mechanism of action on off-target effects and sequence specificity. Current Topics in Medicinal Chemistry 7, 651-660, 2007.

    Srsen, V., Merdes, A. The centrosome and cell proliferation. Cell Division 1, 26, 2006.

    Takahashi, K. Cilia and flagella. Cell Structure and Function 9 Suppl, 87-90, 1984.

    Takai, H., Naka, K., Okada, Y., Watanabe, M., Harada, N., Saito, S., Anderson, C. W., Appella, E., Nakanishi, M., Suzuki, H., Nagashima, K., Sawa, H., Ikeda, K., and Motoyama, N. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. The European Molecular Biology Organization Journal 21, 5195-5205, 2002.

    Tay, H. G., Schulze, S. K., Compagnon, J., Foley, F. C., Heisenberg, C. P., Yost, H. J., Abdelilah-Seyfried, S., and Amack, J. D. Lethal giant larvae 2 regulates development of the ciliated organ kupffer's vesicle. Development 140, 1550-1559, 2013.

    Thisse, C., and Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols 3, 59-69, 2008.

    Thomson, D., and Smith, G. Pcr-based plasmid vector construction for generation of recombinant viruses. Journal of Virological Methods 94, 7-14, 2001.

    Tsang, W. Y., Bossard, C., Khanna, H., Peranen, J., Swaroop, A., Malhotra, V., and Dynlacht, B. D. Cp110 suppresses primary cilia formation through its interaction with cep290, a protein deficient in human ciliary disease. Developmental Cell 15, 187-197, 2008.

    Tsou, M. F., and Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947-951, 2006.

    Turner, L., Stern, A. S., and Berg, H. C. Growth of flagellar filaments of escherichia coli is independent of filament length. Journal of Bacteriology 194, 2437-2442, 2012.

    Verkade, H., and Heath, J. K. Wnt signaling mediates diverse developmental processes in zebrafish. Methods in Molecular Biology 469, 225-251, 2008.

    Wang, G., Manning, M. L., and Amack, J. D. Regional cell shape changes control form and function of kupffer's vesicle in the zebrafish embryo. Developmental Biology 370, 52-62, 2012.

    Waters, A. M., and Beales, P. L. Ciliopathies: An expanding disease spectrum. Pediatric Nephrology 26, 1039-1056, 2011.

    Westerfield, M. General Methods for Zebrafish Care. The Zebrafish Book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. University of Oregon Press, Eugene, 13-27, 2000.

    Williams, C. L., Li, C., Kida, K., Inglis, P. N., Mohan, S., Semenec, L., Bialas, N. J., Stupay, R. M., Chen, N., Blacque, O. E., Yoder, B. K., and Leroux, M. R. Mks and nphp modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. The Journal of Cell Biology 192, 1023-1041, 2011.

    Yamaguchi, M., Fujimori-Tonou, N., Yoshimura, Y., Kishi, T., Okamoto, H., and Masai, I. Mutation of DNA primase causes extensive apoptosis of retinal neurons through the activation of DNA damage checkpoint and tumor suppressor p53. Development 135, 1247-1257, 2008.

    Yoder, B. K. Role of primary cilia in the pathogenesis of polycystic kidney disease. Journal of the American Society of Nephrology 18, 1381-1388, 2007.

    Zhang, M., and Assouline, J. G. Cilia containing 9 + 2 structures grown from immortalized cells. Cell Research 17, 537-545, 2007.

    Zhou, B. B., and Bartek, J. Targeting the checkpoint kinases: Chemosensitization versus chemoprotection. Nature Reviews Cancer 4, 216-225, 2004.

    Zhou, B. B., and Elledge, S. J. The DNA damage response: Putting checkpoints in perspective. Nature 408, 433-439, 2000.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE