| 研究生: |
馮天照 Feng, Tien-Zhao |
|---|---|
| 論文名稱: |
結合高光譜影像與RUSLE評估沖蝕潛勢—以曾文水庫樂野集水區為例 Assessment of soil erosion susceptibility with airborne hyperspectral data and RUSLE model:a case study in Leye watershed at Zengwun reservoir |
| 指導教授: |
余騰鐸
Yu, Ting-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | RUSLE 、高光譜影像 、MNF轉換 、MTMF |
| 外文關鍵詞: | RUSLE model, hyperspectral image, MNF, MTMF |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣受地狹人稠、降雨集中加上川短流急等等因素的影響,在國家用水上多仰賴水庫等大型蓄水設施,然而受颱風等強降雨的侵襲,大量泥沙灌入壩中,嚴重縮短了水庫的使用年限。因此若能預估集水區的水土流失量,便能對症下藥,減緩壩底淤泥的增加。本研究區域位於曾文水庫上游之樂野集水區,該區地勢陡峭、邊坡穩定性差、侵蝕作用旺盛。研究目的為結合高光譜影像與RUSLE進行土壤沖蝕情形的評估。
在目前廣泛使用的修正版通用土壤流失公式(RUSLE)中,土壤抗侵蝕能力與土壤粒徑息息相關。因此本研究將RUSLE與高光譜影像做結合,透過現地調查評估研究場址之土壤粒徑與光譜資料相關性,並將其應用至高光譜影像,藉此獲得大範圍且快速的土壤流失量評估。
針對高光譜影像的特徵萃取以及影像降維的部分,本研究採用MNF轉換來進行,同時為了降低濾除雜訊時不同地物特徵造成的影響,利用物件式分類將研究區域劃分成林地、裸露地、建物、河道、農作地等類別,取出裸露地區域作為遮罩以方便後續高光譜影像的處理,並將分類結果用作於RUSLE中覆蓋及管理因子的評估上。隨後利用MTMF偵測土壤純淨像元,並利用現地光譜分析結果,得出像元粒徑並將其計算成土壤沖蝕性指數。最後將各因子進行乘積得出土壤流失量預估模型,將其與現地沖蝕釘資料進行比對,探討高光譜影像結合RUSLE之可行性。
在粒徑上,本研究受高光譜拍攝時間與現地試驗時間的因素,無法直接驗證影像粒徑分析之準確性,但亦利用坡度等間接證據,對合理性進行評估,並得出具有一定可行性的結論。而針對土壤流失上,本研究雖然低估了該研究場址之土壤流失情形,但整體的數值尺度十分相似,仍可作為快速評估沖蝕潛勢的手段之一。
With the climate changing and land development, soil erosion is the growing problem in conservation of soil and water within watershed. This study intends to use Revised Universal Soil Loss Equation (RUSLE) with hyperspectral data to analyze the soil properties rapidly and to estimate the quantity soil loss in the Leye watershed at Zengwun reservoir.
Soil erodibility is an important factor related to geometric mean particle diameter (Dg) of soil while applying to RUSLE. This study analyzes the relationship between soil particle size and spectral data via field survey. On the other hand, the pure soil pixels of the hyperspectral image are extracted by MNF transform and MTMF method. Then the distribution of the soil properties and soil erodibility factor (K) will be calculated by applying the result of the field test onto the soil pixels. Other parameters of RUSLE are calculated with remote sensing data, like DEM (Digital Elevation Model). Finally, the distribution and amount of soil loss can be predicted by integrating all parameters and verified by the ground truth data from field erosion pins test.
According to the results of spectral analysis, Dg of the soil is closely related to spectral reflectivity strength and the field data consists with hyperspectral images. So, the Dg and soil loss of each pixel in the Leye watershed could be estimated quickly. However, the potential soil loss is underestimated and inconsistent with ground-truth data at this work. It is caused by: (1) the RUSLE is a long-time empirical model designed for gentle area, therefore it is unsuitable to this study. (2) the soil data is discrete, so the kriging method is inapplicable in this case. (3) any parameter of RUSLE is influenced by other parameters and resulting a low accuracy consequence.
1. 中興測量有限公司(2012)。101年度發展高光譜與光達技術結合之應用工作案-工作總報告書。
2. 行政院農業委員會水土保持局(2018)。水土保持手冊。
3. 劉偉東(2002)。高光谱遥感土壤信息提取與挖掘研究。中國科學院研究生院(遥感應用研究所)。
4. 吳佩儒(2015)。台灣降雨沖蝕指數圖之修訂及最大三十分鐘降雨強度之推估。國立中興大學,台中。
5. 吳嘉俊(2010)。從山坡地開發談土壤流失量估算之水土保持因子選取。水土保持技術學報,5(3),184-188.
6. 吳嘉俊、林俐玲、盧光輝(1996)。土壤流失量估算手冊。國立屏東技術學院,屏東。
7. 吳藝昀(2004)。台灣天然雨滴粒徑分佈及年等降雨沖蝕指數圖之修訂。國立中興大學,台中。
8. 李小娟、宮兆寧、劉曉萌、李靜(2007)。ENVI遙感影像處理教程。中國環境科學出版社,北京。
9. 李明熹、林煥軒、詹于婷(2014)。利用日、月及年降雨量估算年降雨沖蝕指數。中華水土保持學報,45(2),103-109。
10. 李建堂(1997)。土壤沖蝕的量測方法.。國立台灣大學地理學系地理學報,23,89-106。
11. 林文英、林俐玲(2008)。土壤流失推估模式之應用與探討。水土保持學報,40(3),357-368。
12. 林文賜、林昭遠、周天穎(2003)。集水區空間貿訊萃取及坡面泥砂產量推估之研究。航測及遙測學刊,8(3),33-58。
13. 林俐玲、張舒婷(2008)。土壤沖蝕性指數估算公式之研究。中華水土保持學報,39(4),355-366。
14. 范正成(2005)。通用土壤流失公式在台灣地區應用之探討。中美陡坡土壤流失量推估技術研討會論文集,1-52。
15. 莊心凱、林銘郎、黃文昭(2012)。應用物件式影像分析方法於山區工程環境之判釋。工程環境會刊,29,99-123。
16. 許振崑、林伯勳(2010)。莫拉克颱風於石門水庫集水區土壤沖蝕量特性分析。2010岩盤工程研討會論文集,841~850。
17. 許晃雄、陳正達、盧孟明、陳永明、周佳、吳宜昭(2011)。台灣氣候變遷科學報告。臺灣氣候變遷推估與資訊平台建置計畫。
18. 陳樹群、吳俊毅等人(2009)。GIS圖層及修正因子建置台灣通用土壤流失公式(TUSLE)─以石門水庫集水區為例。中華水土保持學報,40(2),185-197。
19. 童慶禧、張兵、鄭蘭芬(2006)。高光譜遙感─原理、技術及應用。高等教育出版社。
20. 黃俊德(1979)。台灣降雨沖蝕指數之研究。中華水土保持學報,10(2),127-144。
21. 楊斯堯、詹前登(2010)。運用時雨量資料推估降雨沖蝕指數。中華水土保持學報,41(3),189-199。
22. 萬鑫森、黃俊義(1989)。臺灣東部山坡地土壤沖蝕性及流失量之推估。農林學報,38(2),37-48。
23. 盧昭堯、蘇志強、吳藝昀(2005)。台灣地區年等降雨沖蝕指數圖之修訂。中華水土保持學報,36(2),159-172。
24. 謝兆申、王明果(1991)。台灣地區主要土類圖輯。國立中興大學土壤調查試驗中心。
25. 蘇志強、吳佩儒、盧昭堯(2016)。台灣降雨特性變化及降雨沖蝕指數圖修訂。中華水土保持學報,47(1),1-12。
26. Bedidi, A., Cervelle, B., Madeira, J., & Pouget, M. (1992),Moisture effects on visible spectral characteristics of lateritic soils. Soil Science, 153(2), 129-141.
27. Boardman, J. W. (1998),Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering. Summaries of the seventh JPL Airborne Geoscience Workshop, JPL Publication, 1998, NASA Jet Propulsion Laboratory.
28. Boardman, J.W., & Kruse, F. A. (2011),Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4138-4152.
29. Clark, P. J.,& Evans, F. C. (1954),Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445-453.
30. Congalton, R. G., Oderwald, R. G., & Mead, R. A. (1983),Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogrammetric engineering and remote sensing, 49(12), 1671-1678.
31. Conforti, M., Buttafuoco, G., Leone, A., Aucelli, P., Robustelli, G., Scarciglia, F. (2013),Studying the relationship between water-induced soil erosion and soil organic matter using Vis–NIR spectroscopy and geomorphological analysis: a case study in southern Italy. Catena, 110, 44-58
32. De Jong, S. M. (1994),Applications of reflective remote sensing for land degradation studies in a Mediterranean environment.Koninklijk Nederlands Aardrijkskundig Genootschap.
33. Desmet, P. J. J., & Govers, G. (1996),A GIS-procedure for the automated calculation of the USLE LS factor on topographically complex land units. Journal of Soil and Water Conservation, 51(5), 427–433.
34. Elsenbeer, H., Cassel, D., & Tinner, W. (1993),A daily rainfall erosivity model for Western Amazonia. Journal of Soil and Water Conservation, 48(5), 439-444.
35. Erencin, Z., Shresta, D., & Krol, I. B. (2000),C-Factor Mapping Using Remote Sensing and GIS: A Case Study of Lom Sak/Lom Kao, Thailand. Geographisches Institut, Justus Liebig Universität, Giessen.
36. Gallant, J. C., & Hutchinson, M. F. (2011),A differential equation for specific catchment area. Water Resources Research, 47(5).
37. Ganasri, B. P., & Ramesh, H.(2016),Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953-961.
38. Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988),A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing, 26(1),65-74.
39. He, Y., Huang, M., García, A., Hernández, A., & Song, H. (2007),Prediction of soil macronutrients content using near-infrared spectroscopy. Computers and Electronics in Agriculture, 58(2), 144–153.
40. Jafari, R., & Lewis, M. M. (2012),Arid land characterisation with EO-1 Hyperion hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 19(10), 298-307.
41. Julien, P. Y., & Simons, D. B. (1985),Sediment Transport Capacity of Overland Flow. Transactions of the ASAE, 28(3),755-762.
42. Kinnell, P. (2005),Why the universal soil loss equation and the revised version of it do not predict event erosion well. Hydrological Processes, 19(3), 851-854.
43. Kruse, F. A. & Boardman, J. W. (2000),Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing. Aerospace Conference Proceedings, 2000 IEEE, IEEE.
44. Lal, R. (1994),Soil erosion research methods, the United States ,CRC Press.
45. McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K., Meyer, L. D. (1987),Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the ASAE, 30(5), 1387-1396.
46. McCool, D. K., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1989),Revised Slope Length Factor for the Universal Soil Loss Equation. Transactions of the ASAE, 32(5), 1571-1576.
47. Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996),Modelling topographic potential for erosion and deposition using GIS. International journal of geographical information systems,10(5), 629-641.
48. Moore, I. D., & Burch, G. J. (1986),Modelling Erosion and Deposition: Topographic Effects. Transactions of the ASAE, 29(6), 1624-1630.
49. Moore, I. D., & Wilson, J. P. (1992),Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423-428.
50. Morellos, A., Pantazi, X. E., Moshou, D., Alexandridis, T., Whetton, R., Tziotzios, G., Wiebesohn, J., Bill, R., Mouazen, A. (2016),Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using vis-nir spectroscopy. Biosystems Engineering, 152, 104–116.
51. Napoli, M., Cecchi, S., Orlandini, S., Mugnai, G., & Zanchi, C. A. (2016), Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE. Catena, 145, 246-256.
52. Nouri, M., Gomez, C., Gorretta, N., Roger, J. M. (2017),Clay content mapping from airborne hyperspectral Vis-NIR data by transferring a laboratory regression model. Geoderma, 298, 54–66
53. O'Callaghan, J. F., & Mark, D. M. (1984),The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3), 323-344.
54. Panagos, P., Borrelli, P., & Meusburger, K. (2015),A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences, 5(2), 117-126.
55. Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991),RUSLE: Revised universal soil loss equation. Journal of soil and Water Conservation, 46(1),30-33.
56. Renard, K. G. (1997),Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA, Agricultural Handbook, 703, 384 pp.
57. Baatz, M., & Schape, A. (2000),Multiresolution Segmentation: an optimization approach for high qualitymulti-scale image segmentation. Journal of Photogrammetry and Remote Sensing, 58, 12–23.
58. Shirazi, M. A., & Boersma, L. (1984),A Unifying Quantitative Analysis of Soil Texture 1. Soil Science Society of America Journal, 48(1), 142-147.
59. Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., & Aspnäs, M. (2016),Parallel flow accumulation algorithms for graphical processing units with application to RUSLE model. Computers & Geosciences, 89, 88-95.
60. Swain, P. H., & Shirley, M. (1978),Remote sensing: the quantitative approach. McGraw-Hill International Book Copany, 147-168.
61. Switzer, P., & Green, A. (1984),Min/max autocorrelation factors for multivariate spatial imagery. Stanford University.
62. Tanyaş, H., Kolat, Ç., & Süzen, M. L. (2015),A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam. Journal of Hydrology, 528, 584-598.
63. Viscarra R. A., & Webster, R. (2011),Discrimination of Australian soil horizons and classes from their visible-near infrared spectra. European Journal of Soil Science, 62, 637–647.
64. Wang, G., Wu, B., Zhang, L., Jiang, H., & Xu, Z. (2014),Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall. Journal of Hydrology, 514, 180-191.
65. Wang, G.Q., Fang, Q.Q., Teng, Y.G., Yu, J.S. (2016),Determination of the factors governing soil erodibility using hyperspectral visible and near-infrared reflectance spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 53, 48-63.
66. Williams, J. R. (1975),Sediment-yield prediction with universal equation using runoff energy factor. In: Present and prospective Technology for predicting sediment yields and sources, 244-252, Agricultural Research Service, US Department of Agriculture.
67. Wischmeier, W. H., & Smith, D. D. (1965),Predicting rainfall erosion losses from chopland east of the Rocky mountains. USDA Agriculture Handbook 282.
68. Wischmeier, W. H., & Smith, D. D. (1978),Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning.
69. Yang, H., Kuang, B., & Mouazen, A.M. (2012),Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction. European Journal of Soil Science, 63, 410–420.
70. Yu, B., & Rosewell, C. (1996),An assessment of a daily rainfall erosivity model for New South Wales. Soil Research, 34(1), 139-152.
71. Zhang, H., Yang, Q., Li, R., Liu, Q., Moore, D., He, P., Ritsema, C. J., & Geissen, V. (2013),Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences, 52, 177-188.