| 研究生: |
許志忠 Hsu, Chih-Chung |
|---|---|
| 論文名稱: |
平面震波與不同開孔率拋物面交互作用之研究 Investigation of a Planar Shock Wave on a Porous Parabolic Reflector |
| 指導教授: |
尤芳忞
Yu, Fan-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 震波聚焦 、透氣材料 、開孔率 、臨界轉換楔形角度 、彩色紋影法 |
| 外文關鍵詞: | shock wave focusing, porous material, porosity, critical transition wedge angle, color schlieren |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討不同馬赫數的平面震波作用於不同開孔率的拋物面反射體所產生的變化情形,平面震波作用於拋物面體時震波會產生聚焦,此震波聚焦點上具有極高的能量,藉由量測震波聚焦點附近各點的壓力變化可以清楚的知道震波聚焦所能放大的壓力,另外配合彩色紋影法所拍攝到的流場變化,藉由彩色濾片的安排,可以使我們清楚的看出密度梯度變化的方向。本實驗利用k=0.0255與k=0.0389兩種不同曲率的拋物面反射體配上Ø=0、0.56與0.77三種不同的開孔率當做實驗模型,入射震波馬赫數為1.36~1.65,來探討這些參數對震波聚焦過程所造成的影響,藉由壓力量測的結果與彩色紋影法所拍攝的一連串流場變化,得到的結果為震波作用於具開孔率的透氣材料時震波聚焦點的壓力放大值會下降、臨界轉換楔形角度會變小,而臨界轉換楔形角度變小也使得震波聚焦點遠離拋物面反射體,另外拋物面反射體與入射震波馬赫數也會影響震波聚焦過程與壓力的變化。
This study is being focused on the shock wave behavior for various incident shock wave Mach number on different porous parabolic reflectors. There is a focusing process during a planar shock wave acts on the parabolic reflector, and it will offer an extreme energy that acts on the focal point. By measuring the variation of pressure around the focal point can help to understand the amplification effect on the pressure due to shock wave focusing. In addition, this study also shows the direction of density gradient and the change of the flow filed by using the color schlieren method. This study uses two types of parabolic reflector of curvatures k=0.0255 and k=0.0389, respectively, and the porosity with Ø=0, Ø=0.56 and 0.77, respectively for the experimental models. The incident shock wave Mach number have the range within 1.36 ~ 1.65 during the experiment of focusing process. The results show that the pressure of focal point in focusing process is reduced with the porosity, and the critical transition wedge angle is reduced too comparing to the focusing process on a solid reflector. This effect also causes the focal point to move away from the geometric focal point of the reflector.
[1] Perry, R. W. and Kantrowitz, A., “The Production and Stability of Converging Shcok Waves”, Journal of Applied Physics, Vol. 22, No. 7, pp. 878-886, 1951
[2] Sturtevant, B. and Kulkarny, V. A., “The Focusing of Weak Shock Waves”, Journal of Fluid Mechanics, Vol. 73, pp. 651-671, 1976
[3] Whitham, G. B., “A new approach to problems of shock dynamics Part I Two-dimensional problems” Journal of Fluid Mechanics, Vol. 02, pp. 145-171, 1957
[4] Whitham, G. B., “A new approach to problems of shock dynamics Part 2. Three-dimensional problems” Journal of Fluid Mechanics, Vol. 05, pp. 3695-386, 1959
[5] Izumi, K., Aso, S. and Nishida, M., “Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors” Shock Waves, Vol. 03, pp. 213-222, 1994
[6] Kim, H-D, Kweon, Y-H, Setoguchi, T., and Matsuo, S., “A study on the focusing phenomenon of a weak shock wave” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 217, pp. 1209-1220, 2003
[7] Ben-Dor, G. and Takayama, K., “Analytical prediction of the transition from Mach to regular reflection over cylindrical concave wedges” Journal of Fluid Mechanics, Vol. 158, pp. 365-380, 1985
[8] Suzuki T., Adachi T. and Kobayashi S.,“Nonstationary shock reflection over nonstraight surfaces : an approach with a method of multiple steps” Shock Waves, Vol. 7, pp. 55-62, 1997
[9] Skews, B. W., Kleine, H., Barber, T., and Iannuccelli, M.,“New Flow Features in a Cavity During Shock Wave Impact” 16th Australasian Fluid Mechanics Coference, pp. 414-420, 2007
[10] Li, H., Levy, A., and Ben-Dor, G.,“Head-on interaction of planar shock waves with ideal rigid open-cell porous materials. Analytical model”Fluid Dynamics Research, Vol.16, pp. 203-215, 1995
[11] Li, H., Levy, A., and Ben-Dor, G.,“Analytical prediction of regular reflection over rigid porous surfaces in pseudo-steady flows” Journal of Fluid Mechanics, Vol.282, pp. 219-232, 1995
[12] Skews, B. W., “Oblique reflection of shock waves from rigid porous materials” Shock Waves, Vol.4, pp. 145-154, 1994
[13] Kobayashi, S., Adachi, T., and Suzuki, T.,“Regular reflection of a shock wave over porous layer: theory and experiment.” 19th International Symposium on Shock Waves, Universite de Provence, Marseille, France, pp. 175-180, 1995
[14] Maddox, A. R. and Binder, R. C.,“A new Dimension in Schlieren Technique : Flow Field Analysis Using Color ”, Applied Optics, Vol. 10, Issue 3, pp. 474-481, 1971
[15] Sobeiraj, G. B. and Szumowski, A. P.,“Experimental Investigations of an Underexpanded Jet from a Convergent Nozzle Impinging on Cavity”, Journal of Sound and Vibration, Vol. 149, Issue 3, pp. 375-396, 1991
[16] Settles, G. S., “Modern Developments in Flow Visualization”, AIAA Journal, Vol. 24, pp. 1313-1323, 1986
[17] 陳永堂, “震波於拋物面型反射體之聚焦實驗研究” 國立成功大學航空太空工程研究所碩士論文, 1994
[18] 楊自森, “弱震波於楔形體上反射-繞射現象之探討” 國立成功大學航空太空工程研究所碩士論文, 1997
[19] 陳偉仁, “平面震波於楔形體與垂直鰭片模型所產生反射-繞射現象之探討” 國立成功大學航空太空工程研究所碩士論文, 2004
[20] 陳偉恆, “平面震波與不同表面粗糙度楔形體相互作用之研究” 國立成功大學航空太空工程研究所碩士論文, 2009
[21] Glass, I. I. and Patterson, G. N., “A Theoretical and Experimental Study of Shock-Tube Flow”, Journal of Aeronautical Sciences, Vol. 22, No.2, pp. 73-100, 1955
[22] Gaydon, A. G. and Hurle, I. R., “The Shock Tube in High Temperature Chemical Physics”, Reinhold Publishing Corp., New York, pp. 1-63, 1963
[23] Owczarek, J. A., “Fundamentals of Gas Dynamics”, International Textbook Company, pp. 395-398, 1964
[24] Takayama, K. and Ben-Dor, G., “Reflection and Diffraction of Shock Waves over a Circular Concave Wall”, Rep Inst. High Speed Mech., Vol. 51, pp. 43-87, 1986
[25] Ben-Dor, G., “Shock Wave Reflection Phenomena”, Springer, pp. 267-271, 2007
[26] Goldstein, R. J., “Fluid Mechanics Measurements”, Taylor & Francis Inc, pp. 451-474, 1996