| 研究生: |
陳宇得 Chen, Yu-De |
|---|---|
| 論文名稱: |
具光催化與吸附雙重特性之奈米鈦酸鋇研究 Study of Cu(II) and Cr(VI) adsorption onto BaTiO3 nano-photocatalysts |
| 指導教授: |
陳燕華
Chen, Yan-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鈦酸鋇 、光催化 、吸附 |
| 外文關鍵詞: | nano, BaTiO3, photocatalytic, adspoption |
| 相關次數: | 點閱:62 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,環境汙染的問題越來越嚴重,因此,能夠找到解決環境汙染的方法,是很多人的研究目標。奈米鈣鈦礦結構的礦物,具有催化能力或光催化的性質,可以達到自我清潔及催化分解污染物之功效。例如:LaCrO3及LaNiO3能夠催化分解引擎廢氣CO或NOx等。另外,礦物奈米化後由於具有大的比表面積,因此可用來吸附有害的重金屬污染物。
本研究主要是以簡單、便宜的共沉澱法合成具鈣鈦礦結構的奈米鈦酸鍶與鈦酸鋇。因為奈米鈦酸鋇之光催化效果優於奈米鈦酸鍶,故之後改變起始原料的比例,合成出三種不同粒徑大小的奈米鈦酸鋇。最後,針對三種不同粒徑的奈米鈦酸鋇對亞甲基藍有機染料的光催化分解及銅/鉻離子的吸附加以探討。
根據XRD分析之結果,得知合成出來的奈米鈦酸鍶與奈米鈦酸鋇皆為立方晶系。藉由TEM的觀察,得知奈米鈦酸鋇粒徑範圍約為80~110nm,奈米鈦酸鍶則為60~100nm;另兩種不同粒徑之奈米鈦酸鋇粒徑則為25及75nm。由UV-Vis光譜分析儀得知奈米鈦酸鋇及奈米鈦酸鍶之能隙各為3.39eV及3.43eV;而另二種不同粒徑之奈米鈦酸鋇則為3.38及3.37eV。由BET的分析得知奈米鈦酸鋇及奈米鈦酸鍶之比表面積各為2.72及9.98(m2/g);而粒徑約在25nm之奈米鈦酸鋇具有最大的比表面積,約36.32(m2/g);75nm之奈米鈦酸鋇則為23.97(m2/g)。
在有機染料光催化實驗中,奈米鈦酸鋇的光催化效果略優於奈米鈦酸鍶,而平均粒徑大小在75nm的奈米鈦酸鋇,它的光催化是效果最好的。
在銅離子吸附實驗中,經由動力吸附及等溫吸附模式的計算後,可知粒徑分佈較廣的奈米鈦酸鋇是符合假一階的吸附,而25nm及75nm的奈米鈦酸鋇則是符合假二階的吸附,且都符合Langmuir 之等溫吸附模式。粒徑分佈較廣的奈米鈦酸鋇其最大吸附量為20.53(mg/g);25nm之奈米鈦酸鋇,其最大吸附量為28.49(mg/g),而75nm的奈米鈦酸鋇其吸附量則為26.25(mg/g)。
在鉻離子吸附實驗中,經由動力吸附及等溫吸附模式之計算發現:25nm、75nm及95nm的奈米鈦酸鋇是符合假二階的吸附,且都符合Freundlich 之等溫吸附模式;它們對鉻離子的吸附經由Freundlich 之等溫吸附模式計算後所得到的n值分別為2.29、1.70及1.20,也就是都屬於有利性的吸附。
由上可知:奈米鈦酸鋇具有些許的光催化特性,且對重金屬吸附的效果非常好。我們認為若是可以深入開發此礦物,它是具有潛力應用於環境汙染整治上的。
In recent years, environmental issues have become increasingly more important. Therefore, it is very important to determine an effective way to solve environmental problems. The perovskite minerals have the catalytic or photocatalytic properties, thus they own the ability of self-cleaning and photodegradation, e.g. the LaCrO3 and LaNiO3 can photocatalyze the CO or NOx gas. Additionally, the nano-perovskites can adsorb heavy metals due to its large specific surface area. In this study, nanoparticles with perovskite structure (nano-SrTiO3 and nano-BaTiO3) are synthesized via a co-precipitation method. The photocatalytic activity of nano-BaTiO3 (nano-BTO) is superior to that of nano-SrTiO3 (nano-STO), therefore, we try to adjust the synthetic parameters to fabricate different particle sizes of nano-BTO. Afterward their photocatalytic properties and Cu2+/Cr6+ adsorption characteristics are investigated.
From the XRD pattern, the nano-STO and nano-BTO have a cubic perovskite structure with a polycrystalline phase. The particle size ranges around 60~100 nm for nano-STO; 25, 75 (65~85), and 95 (80~110) nm for different particle sizes of nano-BTO, which is named BTO25, BTO75, and BTO95. The band gap, measured by UV-Vis spectrometer, is 3.43, 3.38, 3.37, and 3.39 for nano-STO, BTO25, BTO75, and BTO95, respectively. Moreover, the specific surface area is 9.98 m2/g for nano-STO; 36.32, 23.97, and 2.72 for BTO25, BTO75, and BTO95, respectively.
In the photocatalytic decomposition of methylene blue experiment, the photocatalytic activity of nano-BTO is better than that of nano-STO, and the photocatalytic efficiency is best for BTO75. As for the Cu2+ adsorption, the experimental data are well fitted to the pseudo-second-order equation except for BTO95 (pseudo-first-order). It suggests that the Langmuir isotherm is more adequate for Cu2+ adsorption onto nano-BTO. The maximum Cu(II) adsorption capacity is 28.49, 26.25, and 20.53 mg/g for BTO25, BTO75, and BTO-95, respectively. Further, the Cr6+ adsorption experimental data are well fitted to the pseudo-second-order equation. It also indicates that the Freundlich isotherm is more adequate for Cr6+ adsorption, and the Cr6+ adsorption onto nano-BTO is a favorable process.
Briefly, the nano-BTO exhibits some photocatalytic activity and possess a high adsorption capacity for copper and chromium ions. We believe that with continued development, this kind of nanomaterial can be employed in various environmental remediation applications.
余樹楨 晶體之結構與性質。渤海堂文化事業有限公司,台北,共569頁,1987年。
吳政峰 (2005) 溫度和濕度效應對光催化分解氣相揮發性有機物之影響,國立中山大學環境工程研究所博士論文。
林敬智 (2001) 下水污泥灰渣應用於銅離子去除之初步探討,國立中央大學環境工程研究所碩士論文。
林聖凱 (2003) 以微波電漿火炬製備可見光化光觸媒之研究,中原大學化學工程學系碩士論文。
林錕松 (2003) 利用奈米零價鐵粉處理受鉻污染水體之研究,元智大學化學工程學系碩士論文。
金映君 (2006) 檸檬酸鹽Fe(III)、矽酸鹽Fe(III)合成氧化鐵吸附砷之研究,國立中山大學海洋環境及工程學系碩士論文。
施又楨 (2005) 可見光奈米光觸媒對室內環境改善之研究,國立台灣科技大學營建工程學系研究所碩士論文。
張東憲 (2004) 奈米光觸媒應用於玻璃表面之自淨功能研究,國立台灣科技大學營建工程系碩士論文。
張家豪 (2004) 以有機前導物法製備SrTiO3粉末及其光催化性質之研究,國立成功大學資源工程研究所碩士論文。
邱奕霖 (2003) 以CVD法製備TiO2光觸媒去除水溶液中雙氯酚之研究,中興大學環境工程學系碩士論文。
黃耀輝 (2004) 鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究,國立成功大學化學工程研究所碩士論文。
楊宗燁 (2005) 奈米二氧化鈦基系統之氣體感測行為研究,大同大學材料工程研究所博士論文。
廖彩惠 (2004) 多孔性奈米級二氧化鈦及鈦酸鋇粉體之製備及特性研究,中原大學化學系碩士論文。
郭政男 (2005) 以水熱法合成(Ba1-xCax)(Ti1-yZry)O3奈米粉末之研究,國立成功大學資源工程研究所碩士論文。陳11禹宏 (2001) 二氧化鈦的修飾及其催化分解水中有機污染物的研究及Cu-MCM-41的EXAFS數據分析,臺灣大學化學研究所碩士論文。
謝嘉鴻 (2005) 新型光觸媒之製備及光催化染料廢水之研究,國立雲林科技大學環境與安全工程系碩士論文。
鄭正垣 (2006) 水中甲醛之二氧化鈦光催化分解研究,國立高雄第一科技大學環境與安全衛生工程系碩士論文。鍾17朝宇 (1993) 複合型鈣鈦礦Ba1-xAx(Fe0.5Nb0.5)1-x/4O3 (A=La、Bi)之介電性質研究,國立成功大學材料科學及工程研究所博士論文。
羅卓卿 (2008) 應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究,國立中山大學環境工程研究所博士論文。
鐘慶璋 (2006) 複合型鈣鈦礦Ca1-xMxTi1-xCrxO3 (M =Nd, Y, Bi, Yb and Dy)系之介電性質研究,國立成功大學材料科學及工程研究所碩士論文。
A.Y. Fasasi, B.D. Ngom,, J.B. Kana-Kana, R. Bucher, M. Maaza , C. Theron ,and U. Buttner,“Synthesis and characterisation of Gd-doped BaTiO3 thin films prepared by laser ablation for optoelectronic applications,” Journal of Physics and Chemistry of Solids, 70, 1322–1329 (2009).
B. Li, X. Wang, and L. Li, “Synthesis and sintering behavior of BaTiO3 prepared by different chemical methods,” Materials Chemistry and Physics, 78, 292–298 (2002).
C. L. Chen, X. L. Jiao, D. R. Chen, and Y. T. Zhao,“Effects of precursors on hydrothermally synthesized SrTiO3 powders,” Materials Research Bulletin, 36, 2119–2126 (2001).
C. H. Weng, Y.C. Sharma, S. H. and Chu, “Adsorption of Cr(VI) from aqueous solutions by spent activated clay,” Journal of Hazardous Materials, 155, 65–75 (2008).
F. Jiang, Z. Zheng, Z. Y. Xu, S. R. Zheng, Z. B Guo, and L. Q. Chen, “Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2,” Journal of Hazardous Materials B, 134, 94–103 (2006).
G. F. Sophie, M. Boulos, B. Durand, V. Bley, and T. Lebey, “Electrical characteristics of BaTiO3 ceramics from hydrothermal prepared powders,” Journal of the European Ceramic Society, 252,749–2753 (2005).
H. X. Zhang, C. H. Kam, Y. Zhou, S. L. Ng, Y. L. Lam, and S. Buddhudu, “Green up-conversion emission in Er3+:BaTiO3 sol-gel powders,” Spectrochimica Acta Part A, 56, 2231–2234 (2000).
H. Zhao, S. H. Xu, J. B. Zhong, and X. H. Bao, “Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems,” Catalysis Today, 93–95, 857–861 (2004).
H. Y. Xu, S. Q. Wei, H. Wang, M. K. Zhu, R. Yu, and H. Yan, “Preparation of shape controlled SrTiO3 crystallites by sol–gel-hydrothermal method,” Journal of Crystal Growth, 292, 159–164 (2006).
H. Xu, S. Q. Wei, H. Wang, M. K. Zhu, R. Yu, and H. Yan, “Preparation of shape controlled SrTiO3 crystallites by sol–gel-hydrothermal method,” Journal of Crystal Growth, 292, 159–164 (2006).
H. D. Choi, J. M. Cho, K. Baek, J. S. Yang, and J. Y. Lee, “Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon,” Journal of Hazardous Materials, 161, 1565–1568 (2009).
J. Q. Qi, Y. Wang, W. P. Chen, L. T. Li, and H. L. W. Chan, “Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions,” Journal of Solid State Chemistry, 178, 279–284 (2005).
J. S. Wang, S. Yin, M. Komatsu, and T. Sato, “Lanthanum and nitrogen co-doped SrTiO3 powders as visible light sensitive photocatalyst,” Journal of the European Ceramic Society, 25, 3207–3212 (2005).
J.W. Liu, G. Chen, Z.H. Li, and Z.G. Zhang,“Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” Journal of Solid State Chemistry, 179, 3704–3708 (2006).
J. Miao, C. Hu, H. Liu, and Y. Xiong, “BaTiO3 nanocubes: Size-selective formation and structure analysis,” Materials Letters, 62, 235–238 (2008).
L. A. Rodrigues, L. J. Maschio, R. E. Silva, and M. L. C. P. Silva, “Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide,” Journal of Hazardous Materials, 173, 630–636(2010).
M. Kobya, “moval of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies,” Bioresource Technology, 91, 317–321 (2004).
M. Cernea, O. Monnereau, P. Llewellyn, L. Tortet, and C. Galassi, “Sol–gel synthesis and characterization of Ce doped-BaTiO3,” Journal of the European Ceramic Society, 26, 3241–3246 (2006).
M. Šljivić, I. Smičiklas, S. Pejanović, and I. Plećaš, “Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia,” Applied Clay Science, 43, 33–40 (2009).
M. C. Yeber, C. Soto, R. Riveros, J. Navarrete, and G. Vidal, “Optimization by factorial design of copper (II) and toxicity removal using a photocatalytic process with TiO2 as semiconductor,” Chemical Engineering Journal, 152, 14–19 (2009).
P.M. Pimentel, M.A.F. Melo, D.M.A. Melo, A.L.C. Assunção, D.M. Henrique , C.N. Silva Jr., and G. González, “Kinetics and thermodynamics of Cu(II) adsorption on oil shale wastes,”Fuel processing technology, 89, 62–67 (2008).
P. Suksabye, A. Nakajima, P. Thiravetyan, Y. Baba, and W. Nakbanpote, “Mechanism of Cr(VI) adsorption by coir pith studied by ESR and adsorption kinetic,” Journal of Hazardous Materials, 161, 1103–1108 (2009).
R. Kavian, and A. Saidi, “Sol–gel derived BaTiO3 nanopowders,” Journal of Alloys and Compounds, 468, 528–532 (2009).
S. Lee, T. Son, J. Yun, H. Kwon, G. L. Messing, and B. Jun, “Preparation of BaTiO3 nanoparticles by combustion spray pyrolysis,” Materials Letters, 58, 2932– 2936 (2004).
S. Zhang, J. Liu, Y. Han, B. Chen, and X. Li, “Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions,” Materials Science and Engineering B, 110, 11–17 (2004).
V. S. Tiwari, D. Pandey, and P. Groves, “The Influence of a Powder Processing Technique on Chemical Homogeneity and the Diffuse Phase Transition Behavior of Ba0.9Ca0.1TiO3 Ceramics,” J. Phys. D: Appl. Phys., 22, 837-843 (1989).
W. L. Luan, and L. A. Gao, “Influence of pH value on properties of nanocrystalline BaTiO3 powder,” Ceramics International, 27, 645–648 (2001).
W. Strek, D. Hreniak, G. Boulon, Y. Guyot, and R. Pazik, “Optical behavior of Eu3+-doped BaTiO3 nano-crystallites prepared by sol–gel method,” Optical Materials, 24, 15–22 (2003).
W. Lu, M. Quilitz, and H. Schmidt, “Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions: Preparation, characterization and sintering,” Journal of the European Ceramic Society, 27, 3149–3159 (2007).
W. Li, Z. Xu, R. Chu, P. Fu, and J. Hao, “Structure and electrical properties of BaTiO3 prepared by sol–gel process,” Journal of Alloys and Compounds, 482, 137–140 (2009).
X. S. Niu, H. H. Li, and G. U. Liu, “Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd),”Journal of Molecular Catalysis A: Chemical, 232, 89-93 (2005).
X. Zhu, J. Zhu, S. Zhou, Z. Liu, N. Ming, and D. Hesse,“BaTiO3 nanocrystals: Hydrothermal synthesis and structural characterization,” Journal of Crystal Growth, 283, 553–562 (2005).
X. F. Lei, and X. X. Xue, “Preparation of perovskite type titanium-bearing blast furnace slag photocatalyst doped with sulphate and investigation on reduction Cr(VI) using UV–vis light,” Materials Chemistry and Physics, 112, 928–933 (2008).
Y. C. Sharma, “Effect of Temperature on Interfacial Adsorption of Cr(VI) on Wollastonite,” Journal of Colloid and Interface Science, 233, 265–270 (2001).
Y. Hu, O. K. Tan, J. S. Pan, H. Huang, and W. Cao, “The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor,”Sensors and Actuators B., 108, 244-249 (2005).
Y. J. Li, S. G. Sun, M. Y. Ma, Y. Z. Ouyang, and W. B. Yan “Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: Effects of initial RhB content, light intensity and TiO2 content in the catalyst,” Chemical Engineering Journal, 142, 147–155 (2008).
Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, “Microstructural and optical investigations of sol–gel derived ferroelectric BaTiO3 nanocrystalline films determined by spectroscopic ellipsometry,” Physics Letters A, 372, 4521–4526 (2008).
Y. Liu, L. Xie, Y. Li, R. Yang, J. Qu, Y. Li, and X. Li, “Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation,” Journal of Power Sources, 183, 701–707 (2008).
Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, and G. Han, “Hydrothermal synthesis of single-crystal BaTiO3 dendrites,” Materials Letters, 63, 239–241 (2009).
Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, and G. Han “Formation of single-crystal SrTiO3 dendritic nanostructures via a simple hydrothermal method,” Journal of Crystal Growth, 311, 2519–2523 (2009).
Yen-Hua Chen , and Fu-An Li “Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts,” Journal of Colloid and Interface Science, 347, 277–281 (2010).