| 研究生: |
黃睦翔 Huang, Mu-Siang |
|---|---|
| 論文名稱: |
水砂量影響三維Gilbert三角洲之形貌演變:大尺度物理實驗 Morphological Evolution of 3D Gilbert-type Delta in response to Flow and Sediment: Large-scale Physical Experiments |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 三維三角洲 、水砂量 、大尺度物理實驗 |
| 外文關鍵詞: | 3D-delta, flow and sediment, experiments |
| 相關次數: | 點閱:116 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的三角洲實驗較少討論泥砂量對於三維三角洲形貌演化的影響,大部分三維三角洲實驗皆集中於三角洲topset的形貌變化;Ke & Capart (2015)有研究出相應的數值模型並且Ke (2016)進行一系列水下三角洲實驗並結合數值模型進行對比。並且本研究中有觀察到類似Vlaswinkel (2011)實驗之潮汐河道(tidal channel)形貌,這樣的樹枝狀河道在三維三角洲中水面線前出現並與其非常相似,但它並非由潮汐震盪的影響而生成,而是藉由上游端含砂水流的輸入實驗區域在水面線前形成,因此本研究除了討論水砂量影響三維三角洲水上及水下之體積變化量及水上三角洲之高程與坡度變化,並討論水砂量的不同對水陸交界處前河道的影響。
研究結果顯示,在以水流量為固定值、砂流量為變數時,水上三角洲之體積變化量會隨著水砂比的增加而減少,而水流量的增加卻會影響水下三角洲之體積變化量,再者隨著水砂比的增加水上三角洲平均坡度反而下降,而不同水砂量會有不同之縱斷面平均高程曲線,高程曲線只會隨時間向上平移並且曲線在每個時段皆相似,達到類似穩定堆積的動態平衡。而樹枝狀河道在會因為上游沖積扇堆積而將其擠壓至左右兩側,樹枝狀河道在依然會在左右向內陸延伸,但是它跟水砂量的影響是間接的,樹枝狀河道在的發展會受到沖積扇所控制。
The delta experiments seldom discuss the influence of the amount of water and sand on the evolution of the three-dimensional delta morphology. Most of the experiments focus on the topset delta morphology changes. In this study, a similar morphology to the tidal channel in the experiment of Vlaswinkel (2011) was observed. Such a dendritic channel appeared in front of the water surface line in the three-dimensional delta, but it was not generated by the influence of tidal turbulence. Therefore, we discuss the influence of the water-sand ratio on the volume change of the topset and forset of the three-dimensional delta, the change of the elevation and slope of the topset, and the influence on the dendritic channel.
The research results show that the volume change of the topset delta will decrease with the increase of the water-sand ratio, and only the change of the water flow will affect the volume change of the forset delta. Then with the increase of the water-sand ratio, the average slope of the water delta decreases, and different water-sand ratios will have different vertical profile average elevation curves. Finally, the dendritic channels will squeeze them to the left and right due to the accumulation of upstream alluvial fans, and their development and extension will be controlled by the upstream alluvial fans.
1. Carlson, B., Piliouras, A., Muto, T., & Kim, W. (2018). Control of Basin Water Depth On Channel Morphology and Autogenic Timescales in Deltaic Systems. Journal of Sedimentary Research, 88(9), 1026-1039.
2. Cazanacli, D., Paola, C., & Parker, G. (2002). Experimental Steep, Braided Flow: Application to Flooding Risk on Fans. Journal of Hydraulic Engineering, 128(3), 322-330.
3. Clarke, L. E. (2015). Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244, 135-145.
4. Finotello, A., Lentsch, N., & Paola, C. (2019). Experimental delta evolution in tidal environments: Morphologic response to relative sea-level rise and net deposition. Earth Surface Processes and Landforms, 44(10), 2000-2015.
5. Galloway, W. (1975). Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional system. Society of Economic Paleontologists and Mineralogist (SEPM), Special Publication No. 31, 127-156.
6. Galloway, W. E. (1991). Fan-Delta, Braid Delta and the Classification of Delta Systems. Acta Geologica Sinica - English Edition, 4(4), 387-400.
7. Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J., & Lamb, M. P. (2016). Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta. Journal of Geophysical Research: Earth Surface, 121(9), 1651-1675.
8. Grimaud, J.-L., Paola, C., & Ellis, C. (2017). Competition between uplift and transverse sedimentation in an experimental delta. Journal of Geophysical Research: Earth Surface, 122(7), 1339-1354.
9. Heller, P. L., Paola, C., Hwang, I.-G., John, B., & Steel, R. (2001). Geomorphology and Sequence Stratigraphy Due to Slow and Rapid Base-Level Changes in an Experimental Subsiding Basin (XES 96-1). AAPG Bulletin, 85(5), 817-838.
10. Ke, W.-T., & Capart, H. (2015). Theory for the curvature dependence of delta front progradation. Geophysical Research Letters, 42(24), 10,680-610,688.
11. Kim, W., Paola, C., Voller, V. R., & Swenson, J. B. (2006). Experimental Measurement of the Relative Importance of Controls on Shoreline Migration. Journal of Sedimentary Research, 76(2), 270-283.
12. Martin, J., Sheets, B., Paola, C., & Hoyal, D. (2009). Influence of steady base-level rise on channel mobility, shoreline migration, and scaling properties of a cohesive experimental delta. Journal of Geophysical Research: Earth Surface, 114(F3).
13. Muto, T., Furubayashi, R., Tomer, A., Sato, T., Kim, W., Naruse, H., & Parker, G. (2016). Planform evolution of deltas with graded alluvial topsets: Insights from three-dimensional tank experiments, geometric considerations and field applications. Sedimentology, 63(7), 2158-2189.
14. Muto, T., & Steel, R. J. (2004). Autogenic response of fluvial deltas to steady sea-level fall: Implications from flume-tank experiments. Geology, 32(5), 401-404.
15. Paola, C., Twilley, R., Edmonds, D., Kim, W., Mohrig, D., Parker, G., . . . Voller, V. (2011). Natural Processes in Delta Restoration: Application to the Mississippi Delta. Annual review of marine science, 3, 67-91.
16. Powell, E. J., Kim, W., and Muto, T. (2012), Varying discharge controls on timescales of autogenic storage and release processes in fluvio‐deltaic environments: Tank experiments, J. Geophys. Res., 117, F02011
17. Reitz, M. D., & Jerolmack, D. J. (2012). Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. Journal of Geophysical Research: Earth Surface, 117(F2).
18. Scheidt, C., Fernandes, A. M., Paola, C., & Caers, J. (2016). Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model. Journal of Geophysical Research: Earth Surface, 121(10), 1800-1818.
19. Stefanon, L., Carniello, L., D’Alpaos, A., & Lanzoni, S. (2010). Experimental analysis of tidal network growth and development. Continental Shelf Research, 30(8), 950-962.
20. VAN DIJK, M., KLEINHANS, M. G., POSTMA, G., & KRAAL, E. (2012). Contrasting morphodynamics in alluvial fans and fan deltas: effect of the downstream boundary. Sedimentology, 59(7), 2125-2145.
21. VAN DIJK, M., POSTMA, G., & KLEINHANS, M. G. (2009). Autocyclic behaviour of fan deltas: an analogue experimental study. Sedimentology, 56(5), 1569-1589.
22. Vlaswinkel, B. M., & Cantelli, A. (2011). Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surface Processes and Landforms, 36(6), 739-752
23. Wang, J., Jiang, Z., Zhang, Y., Gao, L., Zhang, H., Liang, Y., . . . Wei, X. (2015). Flume tank study of surface morphology and stratigraphy of a fan delta. Terra Nova, 27. doi:10.1111/ter.12131
24. 石軒寧,2020,「水砂量影響辮狀河川形貌演化之大型物理實驗及二維模式模擬」,成功大學水利及海洋工程學系學位論文,1-180。
25. 柯文韜,2016,「水庫中三角洲演進堆積與排砂之研究」,臺灣大學土木學系學位論文,1-308。
26. 張棠羽,2019,「以實驗方法探究向下丁壩對河道形貌之影響」,成功大學水利及海洋工程學系學位論文,1-111。
27. 黃彥鈞,2020,「寬度及水砂比影響水下辮狀河道演化之研究 : 實驗與水流模式開發」,成功大學水利及海洋工程學系學位論文,1-117。