| 研究生: |
郭美怡 Kuo, Mei-Yi |
|---|---|
| 論文名稱: |
利用流式介電泳微流體晶片進行不同含油量微藻之篩選及偵測 Continuous sorting and detection of microalgae with different lipid contents using flow dielectrophoresis microfluidic chip |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 介電泳 、微流體 、微藻 、油含量 |
| 外文關鍵詞: | dielectrophoresis, microfluidics, microalgae, lipid content |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用介電泳在微流體晶片中操控微藻細胞進行分離,探討連續偵測藻油的可行性,我們採取的分離機制為在第一及第二電極對使微藻細胞受到負介電泳力的作用使其可以被導引及排列成一直線,而在第三電極對時讓不同含油量的微藻細胞受到不同程度的負介電泳力的作用使其達到分離之效果。當微藻細胞受到強的負介電泳力作用時會被分離電極對排斥往支流道流動;受到弱的負介電泳力作用時,會受到流體拖曳力(hydrodynamic force)的作用而繼續往主流道移動。我們發現微藻的crossover frequency隨著含油量的增加而上升,首先以300kHz的操作頻率將微藻以電極對排列成一直線,再以較高的頻率來分離不同含油量之微藻,如7MHz分離含油量13%以下和21%以上的微藻,或是10MHz分離含油量24%以下和30%以上之微藻。而透過螢光強度的檢測,可以針對含油量24%以下和35%以上微藻的分離作判別。
In this study, a continuous flow dielectrophoresis (DEP) microfluidic chip was fabricated and utilized to sort out the microalgae (C. vulgaris) with different lipid contents. The proposed separation scheme is to allow the microalgae with different lipid contents experience different negative or no DEP force at the separation electrode pair under the pressure-driven flow. The microalgae which experience stronger negative DEP will be directed to the side channel while those experience less negative or no DEP force will pass through the separation electrode pair to remain in the main channel. It was found that the higher the lipid content inside the microalgae, the higher the crossover frequency. Separation of the microalgae with 13% and 21% lipid contents, and 24% and 30-35% lipid contents was achieved at the operating frequency 7 MHz, and 10 MHz, respectively. Moreover, separation can be further indicated/verified by measurement of the fluorescence intensity of the neutral lipid inside the sorted algal cells.
[1] Y. Chisti, "Biodiesel from microalgae," Biotechnology Advances, vol. 25, pp. 294-306, May-Jun 2007.
[2] P. J. L. B. Williams, "Biofuel: microalgae cut the social and ecological costs," Nature, vol. 450, pp. 478-478, Nov 22 2007.
[3] H. A. Pohl, "Di electrophoresis the behavior of neutral matter in nonuniform electric field ," 1978.
[4] H. A. Pohl, K. Pollock, and J. S. Crane, " Di electrophoresis force a comparsion of theory and experiment," Journal of Biological Physics, vol. 6, pp. 133-160, 1978.
[5] N. G. Green, A. Ramos, and H. Morgan, "Ac electrokinetics: a survey of sub-micrometre particle dynamics," Journal of Physics D-Applied Physics, vol. 33, pp. 632-641, Mar 2000.
[6] H. Morgan, M. P. Hughes, and N. G. Green, "Separation of submicron bioparticles by dielectrophoresis," Biophys. J., vol. 77, pp. 516-525, Jul 1999.
[7] N. G. Green, H. Morgan, and J. J. Milner, "Manipulation and trapping of sub-micron bioparticles using dielectrophoresis," J. Biochem. Biophys. Methods, vol. 35, pp. 89-102, Sep 1997.
[8] K. Khoshmanesh, S. Baratchi, F. J. Tovar-Lopez, S. Nahavandi, D. Wlodkowic, A. Mitchell, et al., "On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis," Microfluidics and Nanofluidics, vol. 12, pp. 597-606, Jan 2012.
[9] Y. L. Deng, J. S. Chang, and Y. J. Juang, "Separation of microalgae with different lipid contents by dielectrophoresis," Bioresource Technology, vol. 135, pp. 137-141, May 2013.
[10] T. Muller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, and G. Fuhr, "A 3-D microelectrode system for handling and caging single cells and particles," Biosens. Bioelectron., vol. 14, pp. 247-256, Mar 1999.
[11] I. Doh and Y. H. Cho, "A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process," Sensors and Actuators a-Physical, vol. 121, pp. 59-65, May 31 2005.
[12] W. Ming-Wen, J. Kuo-Shyang, Y. Ming-Che, and S. Jui-Chih, "Using a Microfluidic-Microelectric Device to Directly Separate Serum/Blood Cells from a Continuous Whole Bloodstream Flow," Jpn. J. Appl. Phys., vol. 51, pp. 037002 (7 pp.)-037002 (7 pp.), March 2012.
[13] M. Hayashi, T. Kaneko, and K. Yasuda, "Continuous concentration and separation of microparticles using dielectrophoretic force in a v-shaped electrode array," Jpn. J. Appl. Phys., vol. 50, p. 5, Jun 2011.
[14] P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, "Commercial applications of microalgae," J. Biosci. Bioeng., vol. 101, pp. 87-96, Feb 2006.
[15] S. I. Mussatto, G. Dragone, P. M. R. Guimaraes, J. P. A. Silva, L. M. Carneiro, I. C. Roberto, et al., "Technological trends, global market, and challenges of bio-ethanol production," Biotechnology Advances, vol. 28, pp. 817-830, Nov-Dec 2010.
[16] L. Gouveia and A. C. Oliveira, "Microalgae as a raw material for biofuels production," J. Ind. Microbiol. Biotechnol., vol. 36, pp. 269-274, Feb 2009.
[17] S. M. Renaud, D. L. Parry, L. V. Thinh, C. Kuo, A. Padovan, and N. Sammy, "Effect of light-intensity on the proximate biochemical and fatty-acid composition of isochrysis sp and nannochloropsis-oculata for use in tropical aquaculture," J. Appl. Phycol., vol. 3, pp. 43-53, Mar 1991.
[18] S. M. Renaud, H. C. Zhou, D. L. Parry, L. V. Thinh, and K. C. Woo, "Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp, Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp (clone T ISO)," J. Appl. Phycol., vol. 7, pp. 595-602, Dec 1995.
[19] M. Takagi, Karseno, and T. Yoshida, "Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells," J. Biosci. Bioeng., vol. 101, pp. 223-226, Mar 2006.
[20] C. Y. Chen, K. L. Yeh, H. M. Su, Y. C. Lo, W. M. Chen, and J. S. Chang, "Strategies to Enhance Cell Growth and Achieve High-Level Oil Production of a Chlorella vulgaris Isolate," Biotechnol. Prog., vol. 26, pp. 679-686, May-Jun 2010.
[21] T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, and F. Bux, "Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production," Bioresource Technology, vol. 102, pp. 57-70, Jan 2011.
[22] K. L. Yeh and J. S. Chang, "Nitrogen starvation strategies and photobioreactor design for enhancing lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels," Biotechnol. J., vol. 6, pp. 1358-1366, Nov 2011.
[23] K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, "Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae," J. Phycol., vol. 30, pp. 972-979, Dec 1994.
[24] X. Meng, J. M. Yang, X. Xu, L. Zhang, Q. J. Nie, and M. Xian, "Biodiesel production from oleaginous microorganisms," Renew. Energy, vol. 34, pp. 1-5, Jan 2009.
[25] F. Alonzo and P. Mayzaud, "Spectrofluorometric quantification of neutral and polar lipids in zooplankton using nile red," Mar. Chem., vol. 67, pp. 289-301, Nov 1999.
[26] G. A. Fischer and J. J. Kabara, "Simple multibore columns for superior fractionation of lipid," Anal. Biochem., vol. 9, pp. 303-&, 1964.
[27] L. D. Metcalfe, A. A. Schmitz, and J. R. Pelka, "Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis," Anal. Chem., vol. 38, pp. 514-&, 1966.
[28] Vanwijng.D, "Modified rapid preparation of fatty acid esters from lipids for gas chromatographic analysis," Anal. Chem., vol. 39, pp. 848-&, 1967.
[29] G. H. Huang, G. Chen, and F. Chen, "Rapid screening method for lipid production in alga based on Nile red fluorescence," Biomass Bioenerg., vol. 33, pp. 1386-1392, Oct 2009.
[30] W. Chen, C. W. Zhang, L. R. Song, M. Sommerfeld, and Q. Hu, "A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae," J. Microbiol. Methods, vol. 77, pp. 41-47, Apr 2009.
[31] D. Elsey, D. Jameson, B. Raleigh, and M. J. Cooney, "Fluorescent measurement of microalgal neutral lipids," J. Microbiol. Methods, vol. 68, pp. 639-642, Mar 2007.