| 研究生: |
林銘偉 Lin, Min-wei |
|---|---|
| 論文名稱: |
連結界面於疊層式白光有機二極體元件之研究 The studies of charge-generation junction in tandem-type white-emissive organic/polymer light-emitting diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 疊層式白光有機二極體元件 、面射型元件 |
| 外文關鍵詞: | white color, OLED, Tandem-type |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本篇論文之研究,我們以Polyethylene oxide(PEO)/Al/
molybdenum oxide(MoO3)此結構串聯藍光小分子元件及黃光高分子元件,製做出串聯式白光有機元件,元件亮度表現為13,079 cd/m2、效率表現為3.77 cd/A、頻譜涵蓋從400 nm到750 nm、CIE值為(0.31, 0.33)且演色性值(CRI)高達88。為了進一步了解連接單元Polyethylene oxide(PEO)/Al/molybdenum oxide(MoO3)在串聯式元件中的作用,我們從材料跨壓、光穿透現象去分析連接單元載子注入與傳輸的狀況,發現Polyethylene oxide(PEO)/Al雖其本身具有幫助電子注入至高分子黃光發光層的功效,但亦會阻擋電洞注入上半部藍光元件,且由光穿透量測發現光穿透度會隨金屬Al厚度增加而減低,針對上述兩問題,提出以Polyethylene oxide(PEO)/Al製備為連接單元中電子注入層雖已可製做出高純度白光元件,但欲使黃光及藍光元件能藉由此組連接單元的連結而有相加的成果,需針對Polyethylene oxide(PEO)/Al作製程方式或材料改善。
本論文另外將下射型串聯式白光元件改製作為面射型串聯式元件,利用面射型結構所具有的微共振腔效應,改變共振腔長度,將白光元件在不使用color filter的情況下,製作紅、藍、綠飽和的三原色元件,此部分想法目前為藉由模擬驗證其可行性。
In this work, we studies the charge-generation junction in tandem-type white-emissive organic/polymer light-emitiing diodes. The tandem devices are made of stacking a yellow-emissive phenyl-
substituted poly(para-phenylene vinylene) copolymer-based PLED with a blue-emissive OLED and applying the organic oxide/Al/
molybdenum oxide (MoO3) complex structure as the connecting or chare generation layer (CGL).In the tandem type structure, there are two criteria for the formation of an intermediate connector that has good performance. One criterion is that there is no carrier-injection barrier in the intermediate connector and its related interfaces, and the other criterion is that the intermedia-
te connector should have high optical transparency in the visible spectral range. To examine the carrier injection barrier at Al/
molybdenum oxide (MoO3) and organic oxide/Al interface, we found lot voltage drop cross the organic oxide and Al layer, it means the intermediate connector of organic oxide/Al exhibits bad condi-
tion for carrier injection and transport. Furthermore, the optical spectrum of different thickness of Al shows the optical transparen-
cy intensity decrease with the higher thickness of Al.
The white-emission has high color rending index (~88), having broad free space emission spectrum spanning the range of 350 to 800 nm, so we studies the control of light emission from the tandem-type organic/polymer light-emitting diodes using a microc-
avity structure. Changing cavity length, in same device structure and under no color filter making white color can modify by microcav-
ity effect to red, green and blue color. In this part, we use optical simulation program to realize our ideas.
[1] C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 57, 913
(1987)
[2] S.R. Forrest, Org. Electronics 4, 45 (2003)
[3] J. Kido, M. Kimura, K. Nagai, Science 267, 1332 (1995)
[4] C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913
(1987)
[5] J.H. Burrououghes, D.D.C. Bradley, A.R. Brown, R.N.
Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B.
Holmes, Nature 347, 539 (1990)
[6] M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S.
Subley, M.E. Thompson, S.R. Forrest, Nature (London)
395, 151 (1998)
[7] T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R.
Daik, W.J. Feast, Appl. Phys. Lett. 75, 1679 (1999)
[8] N. Johansson, J. Salbeck, J. Bauer, F. Weissortel, P.
Broms, A. Andersson, W. R. Salaneck, Adv. Mater. 10,
1136 (1998)
[9] G.Gigli, G. Barbarelia, L. Favaretto, F. Cacialli,
R. Cingolani, Appl. Phys. Lett. 75, 439 (1999)
[10] C.W. Tang, S.A. VanSlyke, C.H. Chen, J. Appl. Phys.
65, 3610 (1989)
[11] M.A. Baldo, M.E. Thompson, S.R. Forrest, Nature 403,
750 (2000)
[12] 荊其誠, 焦書蘭, 喻柏林, 胡維生, “色度學” “科學出版
社”出版
[13] A. Dodabalapur, L.J. Rothberg, R.H. Jordan, T.M.
Miller, R.E. Slusher, J.M. Phillips, Appl. Phys.
Lett. 80, 6954 (1996)
[14] A. Dodabalapur, L.J. Rothberg, T.M. Miller, E.W.
Kwock, Appl. Phys. Lett. 64, 2486 (1994)
[15] G. Parthasarathy, G. Gu, S.R. Forrest, Adv. Mater.
11, 907 (1999)
[16] M.F. Lamorte, D. Abbort, Solid-State Electron. 22,
467 (1979)
[17] J.K. Kim, E. Hall, O. Sjolund, L.A. Coldern, Appl.
Phys. Lett. 74, 3251 (1999)
[18] X. Guo, G.D. Shen, G.H. Wang, W.J. Zhu, J.Y. Du, G.
Gao, D.S. Zou, Appl. Phys. Lett. 79, 2985 (2001)
[19] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N.
Kawamura, A. Yokoi, J. Kido, Peoceedings of IDMC’
03,p.413, Fed. 18-21, 2003, Taipei, Taiwan.
[20] J. Huang, M. Pfeiffer, A Werner, J. Blochwitz, K.
Leo, S. Liu, Appl. Phys. Lett. 80, 139 (2002)
[21] B.W. D’Andrade, S.R. Forrest, A.B. Chwang, Appl.
Phys. Lett. 83, 3858 (2003)
[22] J. Kido, T. Matsumoto, Appl. Phys. Lett. 73, 2866
(1998)
[23] C.C. Chang, J.F. Chen, S.W. Hwang, C.H. Chen, Appl.
Phys. Lett. 87, 253501 (2005)
[24] F. Guo, D. Ma, Appl. Phys. Lett. 87, 173510 (2005)
[25] V. Bulovic’, P. Tian, P.E. Burrows, M.R. Gokhale,
S.R. Forrest, M.E. Thompson, Appl. Phys. Lett. 70,
2954 (1997)
[26] S. Han, X. Feng, Z.H. Lu, D. Johnson, R. Wood, Appl.
Phys. Lett. 82, 2715 (2003)
[27] L.S. Hung, C.W. Tang, M.G. Mason, P. Raychaudhuri, J.
Madathil, Appl. Phys.Lett. 78, 544 (2001)
[28] M.H. Lu, M.S. Weaver, T.X. Zhou, M. Rothman, R.C.
Kwong, M.
Hack, J.J. Brown, Appl. Phys. Lett. 81, 3921 (2002)
[29] C.W. Chen, P.Y. Hsieh, H.H. Chiang, C.L. Lin, H.M.
Wu, C.C. Wu, Appl. Phys. Lett. 83, 5127 (2003)
[30] H. Riel, S. Karg, T. Beierlein, W. Ries, K. Neyts, J.
Appl. 94, 5290 (2003)
[31] S. Tanaka, C. Hosakawa, US Patent 6, 107734 (2000)
[32] J.X. Sun, X.L. Zhu, H.J. Peng, M. Wong, H.S. Kwok,
Appl. Phys. Lett. 87, 093504 (2005)
[33] T. Tsutsui, M. Terai, Appl. Phys. Lett. 84, 440 (2004)
[34] C.C. Chang, S.W. Hwang, C.H. Chen, J.F. Chen, Jpn. J.
Appl. Phys. 43, 6418 (2004)
[35] F. Guo, D. Ma, Appl. Phys. Lett. 87, 173510 (2005)
[36] L.S. Liao, K.P. Klubek, C.W. Tang, Appl. Phys. Lett.
84, 167 (2004)
[37] T.Y. Cho, C.L. Lin, C.C. Wu, Appl. Phys. Lett. 88,
111106 (2006)