簡易檢索 / 詳目顯示

研究生: 陳文祥
Chen, Wen-Shiang
論文名稱: 以電紡絲技術製備一維氧化鋅奈米管
Electrospun One-Dimensional Zinc Oxide Nanotubes
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 91
中文關鍵詞: 奈米管電紡絲氧化鋅
外文關鍵詞: nanotubes, zinc oxide, electrospinning
相關次數: 點閱:91下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用高分子輔助方式的電紡絲技術製備一維氧化鋅奈米管。 以化學溶解方式將鋅粉溶入聚丙烯酸高分子溶液之中,並把此不同配方的電紡絲溶液製備成鋅離子與高分子的混合奈米絲。 在富含羧基的奈米絲中,鋅離子均勻的分佈在絲的內部並形成奈米維度的聚集,以在將來形成氧化鋅晶體的成核點。 在鍛燒的過程中,鋅離子形成氧化鋅的時間較早於高分子熱裂解,使得氧化鋅形成奈米管結構。 氧化鋅奈米管的外徑可控制在100 nm至300 nm,並且擁有均勻的壁厚分佈在15 ~ 38 nm。 電紡絲溶液的配方、電紡絲法的參數和形成奈米管的機制都將在本論文中被研究與討論。

    One-dimensional zinc oxide nanotubes were fabricated via the polymer-assisted electrospinning technique. Chemically-dissolved metallic zinc powder in poly(acrylic acid) aqueous solutions were formulated to produce electrospun Zn2+/polyanion nanofibers. Homogeneously dispersed zinc ions in COOH-enriched nanofibers minimized the nano-scaled agglomerations which normally acted as the nucleation sites. Following calcination process encouraged the formation of zinc oxide from Zn2+ species prior to the thermal decomposition of polymer contents, resulting in the hollow structure of zinc oxide nanotubes. Outer diameters of zinc oxide nanotubes were controllable in the range of 100 nm to 300 nm with the uniform tube thickness of 15 ~ 38 nm. Electrospun formula, electrospinning conditions, and the formation mechanism of hollow structures were investigated and discussed in the present work.

    中文摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VII List of Illustrations VIII Chapter 1. Introduction 1 1.1. ZnO materials 1 1.2. Electrospinning 4 1.3. Electrospun inorganic materials 7 Chapter 2. Literature Reviews and Theory 10 2.1. Synthesis Techniques for ZnO Nanowires 10 A. Thermal evaporation 10 B. Chemical vapor deposition (CVD) 11 C. Hydrothermal growth method 11 D. Pulse laser deposition (PLD) 14 2.2. Growth Mechanisms 14 A. Vapor-Liquid-Solid (VLS) mechanism 14 B. Solution-Liquid-Solid (SLS) mechanism 17 C. Template growth mechanism 19 2.3. Research Motivation 21 Chapter 3. Experiments 22 3.1. Materials and Instruments 22 3.1.1. Materials 22 3.1.2. Instruments 22 3.2. Experiment process 24 3.2.1. PAA/zinc solution preparation 24 3.2.2. Fabrications of Zinc/PAA as-spun nanowires 26 3.2.3. Preparations of Zinc/PAA bulk samples 26 3.2.4. Calcination process to crystallize 1-D ZnO nanomaterials 27 3.3. Analysis instrument 30 3.3.1. Scanning Electron Microscopy (SEM): (Philips XL40 FE-SEM) 30 3.3.2. Transmission Electron Microscopy (TEM): (Hitachi HF-2000) 30 3.3.3 Fourier Transform Infrared Spectroscopy (FT-IR): (Jasco-200E) 31 3.3.4. Thermogravimetric Analyzer (TGA): (TA Instrument-Q500) 32 3.3.5. Differential Scanning Calorimetry (DSC): (TA Instrument-2920) 32 3.3.6. Glancing Incident Angle X-ray Diffractometer (GIA-XED): 33 3.3.7. UV-visible spectrometer (UV-vis): (Hitachi U-3010) 33 Chapter 4. Results and Discussions 34 4.1. As-spun PAA/Zinc nanowires 34 4.1.1. Fabricating different diameter PAA/Zinc as-spun nanowires 34 4.1.2 The interaction of PAA and Zinc in the as-spun nanowires 43 4.1.3. Thermal properties of the PAA/Zinc as-spun nanowires 45 4.1.3.1 The Glass transition temperature (Tg) of as-spun nanowires 45 4.1.3.2 The thermal decompose process of the as-spun nanowires 47 4.2. Calcined ZnO nanotubes 51 4.2.1. The formation of ZnO nanotubes 51 4.2.2. Fabricated different size ZnO nanotubes 58 4.3. Calcination process examined by FT-IR 65 4.4. Crystal structure and grain size of ZnO nanotubes 68 4.5. TEM analysis of ZnO polycrystalline nanotubes 75 4.6. Band gap energy of electrospun ZnO nanotubes 82 Chapter 5. Conclusions 84 Reference 85

    1. Yang, Y.; Chen, H.; Zhao, B.; Bao, X., Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives. Journal of Crystal Growth 2004, 263, (1-4), 447.
    2. Purica, M.; Budianu, E.; Rusu, E.; Danila, M.; Gavrila, R., Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 2002, 403-404, 485.
    3. Lee, J.-H.; Ko, K.-H.; Park, B.-O., Electrical and optical properties of ZnO transparent conducting films by the sol-gel method. Journal of Crystal Growth 2003, 247, (1-2), 119.
    4. Matsubara, K.; Fons, P.; Iwata, K.; Yamada, A.; Sakurai, K.; Tampo, H.; Niki, S., ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films 2003, 431-432, 369.
    5. Zheng, M. J.; Zhang, L. D.; Li, G. H.; Shen, W. Z., Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters 2002, 363, (1-2), 123.
    6. Wnek, G. E.; Carr, M. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of Nanofiber Fibrinogen Structures. Nano Letters 2003, 3, (2), 213-216.
    7. J.-J. Wu, S. C. L., Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Advanced Materials 2002, 14, (3), 215-218.
    8. Taylor, G., Electrically Driven Jets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1969, 313, (1515), 453-475.
    9. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, (1), 261-272.
    10. Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F., Regeneration of Bombyx mori silk by electrospinning--part 1: processing parameters and geometric properties. Polymer 2003, 44, (19), 5721-5727.
    11. Joon Seok Lee, K. H. C. H. D. G. S. S. K. D. H. C. H. Y. K. W. S. L., Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science 2004, 93, (4), 1638-1646.
    12. Theron, S. A.; Zussman, E.; Yarin, A. L., Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, (6), 2017-2030.
    13. Tan, S. H.; Inai, R.; Kotaki, M.; Ramakrishna, S., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005, 46, (16), 6128-6134.
    14. Ding, B.; Ogawa, T.; Kim, J.; Fujimoto, K.; Shiratori, S., Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films In Press, Corrected Proof, 62.
    15. Shao, C.; Yang, X.; Guan, H.; Liu, Y.; Gong, J., Electrospun nanofibers of NiO/ZnO composite. Inorganic Chemistry Communications 2004, 7, (5), 625-627.
    16. Yang, X.; Shao, C.; Guan, H.; Li, X.; Gong, J., Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorganic Chemistry Communications 2004, 7, (2), 176-178.
    17. Chen, J.-Y., Polymer-Assisted Electrospinning of Mesoporous Titanium Dioxide Nanofibers. National Cheng Kung University Department of Materials Science and Engineering Master Thesis 2006.
    18. Watthanaarun, J.; Pavarajarn, V.; Supaphol, P., Titanium (IV) oxide nanofibers by combined sol-gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant. Science and Technology of Advanced Materials 2005, 6, (3-4), 240-245.
    19. Li, D.; Xia, Y., Fabrication of Titania Nanofibers by Electrospinning. Nano Letters 2003, 3, (4), 555-560.
    20. Azad, A.-M., Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Materials Science and Engineering: A 2006, 435-436, 468-473.
    21. Yuh, J.; Perez, L.; Sigmund, W. M.; Nino, J. C., Electrospinning of complex oxide nanofibers. Physica E: Low-dimensional Systems and Nanostructures 2007, 37, (1-2), 254-259.
    22. Wu, H.; Lin, D.; Pan, W., Fabrication, assembly, and electrical characterization of CuO nanofibers. Applied Physics Letters 2006, 89, (13), 133125-3.
    23. Zhang, Y.; Li, J.; Li, Q.; Zhu, L.; Liu, X.; Zhong, X.; Meng, J.; Cao, X., Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties. Scripta Materialia 2007, 56, (5), 409-412.
    24. Yu, N.; Shao, C.; Liu, Y.; Guan, H.; Yang, X., Nanofibers of LiMn2O4 by electrospinning. Journal of Colloid and Interface Science 2005, 285, (1), 163-166.
    25. Maensiri, S.; Nuansing, W., Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning. Materials Chemistry and Physics 2006, 99, (1), 104-108.
    26. Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Lee, D. R.; Kim, S. R.; Morris, M. A., Preparation and morphology of niobium oxide fibres by electrospinning. Chemical Physics Letters 2003, 374, (1-2), 79-84.
    27. Li, D.; Herricks, T.; Xia, Y., Magnetic nanofibers of nickel ferrite prepared by electrospinning. Applied Physics Letters 2003, 83, (22), 4586-4588.
    28. Dharmaraj, N.; Park, H. C.; Kim, C. K.; Kim, H. Y.; Lee, D. R., Nickel titanate nanofibers by electrospinning. Materials Chemistry and Physics 2004, 87, (1), 5-9.
    29. Zhang, G.; Kataphinan, W.; Teye-Mensah, R.; Katta, P.; Khatri, L.; Evans, E. A.; Chase, G. G.; Ramsier, R. D.; Reneker, D. H., Electrospun nanofibers for potential space-based applications. Materials Science and Engineering B 2005, 116, (3), 353-358.
    30. Dharmaraj, N.; Kim, C. H.; Kim, K. W.; Kim, H. Y.; Suh, E. K., Spectral studies of SnO2 nanofibres prepared by electrospinning method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2006, 64, (1), 136-140.
    31. Dharmaraj, N.; Park, H. C.; Kim, C. H.; Viswanathamurthi, P.; Kim, H. Y., Nanometer sized tantalum pentoxide fibers prepared by electrospinning. Materials Research Bulletin 2006, 41, (3), 612-619.
    32. Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Lee, D. R., Vanadium pentoxide nanofibers by electrospinning. Scripta Materialia 2003, 49, (6), 577-581.
    33. Lu, X.; Liu, X.; Zhang, W.; Wang, C.; Wei, Y., Large-scale synthesis of tungsten oxide nanofibers by electrospinning. Journal of Colloid and Interface Science 2006, 298, (2), 996-999.
    34. Wang, G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P. I.; Dudley, M., Fabrication and Characterization of Polycrystalline WO<sub>3</sub> Nanofibers and Their Application for Ammonia Sensing. Journal of Physical Chemistry B 2006, 110, (47), 23777-23782.
    35. Shao, C.; Guan, H.; Liu, Y.; Gong, J.; Yu, N.; Yang, X., A novel method for making ZrO2 nanofibres via an electrospinning technique. Journal of Crystal Growth 2004, 267, (1-2), 380-384.
    36. Yao, B. D.; Chan, Y. F.; Wang, N., Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters 2002, 81, (4), 757-759.
    37. Z.R. Dai, Z. W. P. Z. L. W., Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Advanced Functional Materials 2003, 13, (1), 9-24.
    38. Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of Semiconducting Oxides. Science 2001, 291, (5510), 1947-1949.
    39. Wei, A.; Sun, X. W.; Xu, C. X.; Dong, Z. L.; Yu, M. B.; Huang, W., Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters 2006, 88, (21), 213102-3.
    40. Wei, A.; Sun, X. W.; Xu, C. X.; Dong, Z. L.; Yu, M. B.; Huang, W., Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters 2006, 88, (21).
    41. Wang, Z.; Qian, X. f.; Yin, J.; Zhu, Z. k., Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route. Langmuir 2004, 20, (8), 3441-3448.
    42. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E., Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes. Chemistry Materials 2001, 13, (12), 4395-4398.
    43. Wei, A.; Sun, X. W.; Xu, C. X.; Dong, Z. L.; Yang, Y.; Tan, S. T.; Huang, W., Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology 2006, 17, (6), 1740-1744.
    44. Sun, Y.; Fuge, G. M.; Ashfold, M. N. R., Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chemical Physics Letters 2004, 396, (1-3), 21-26.
    45. Wagner, R. S.; Ellis, W. C., VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Applied Physics Letters 1964, 4, (5), 89-90.
    46. Wu, Y.; Yang, P., Direct Observation of Vapor-Liquid-Solid Nanowire Growth. Journal of the American Chemical Society 2001, 123, (13), 3165-3166.
    47. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270, (5243), 1791-1794.
    48. Lu, X.; Hanrath, T.; Johnston, K. P.; Korgel, B. A., Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate. Nano Letters 2003, 3, (1), 93-99.
    49. Gudiksen, M. S.; Lieber, C. M., Diameter-Selective Synthesis of Semiconductor Nanowires. Journal of the American Chemical Society 2000, 122, (36), 8801-8802.
    50. Y. Xia, P. Y. Y. S. Y. W. B. M. B. G. Y. Y. F. K. H. Y., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15, (5), 353-389.
    51. Yin, A. J.; Li, J.; Jian, W.; Bennett, A. J.; Xu, J. M., Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Applied Physics Letters 2001, 79, (7), 1039-1041.
    52. X.-Y. Zhang, L. D. Z. G. W. M. G. H. L. N. Y. J.-P. F. P., Synthesis of Ordered Single Crystal Silicon Nanowire Arrays. Advanced Materials 2001, 13, (16), 1238-1241.
    53. Hong, R.; Pan, T.; Qian, J.; Li, H., Synthesis and surface modification of ZnO nanoparticles. Chemical Engineering Journal 2006, 119, (2-3), 71-81.
    54. Ho-Shing Wu, H.-C. J. J.-w. H., Reaction of polyacrylic acid and metal oxides: Infrared spectroscopic kinetic study and solvent effect. Journal of Applied Polymer Science 1997, 63, (1), 89-101.
    55. Ho-Shing Wu, H.-C. J. S.-S. M., Thermal stability and deformation of poly(acrylic acid)-metal oxides. Journal of Applied Polymer Science 1997, 66, (10), 2021-2027.

    下載圖示 校內:2010-07-26公開
    校外:2012-07-26公開
    QR CODE