| 研究生: |
吳浩中 Wu, Hao-Chung |
|---|---|
| 論文名稱: |
基於高折射率偏振無關超穎表面之寬頻集成式光學元件 Broadband integrated optical components with high-index polarization-insensitive metasurfaces |
| 指導教授: |
吳品頡
Wu, Pin-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 氮化鎵 、介電質超穎表面 、超穎透鏡 、斜聚焦透鏡 、可見光寬頻 、偏振無關 |
| 外文關鍵詞: | Gallium nitride, Dielectric metasurfaces, Metalens, Off-axis focusing metalens, broadband response, polarization independent |
| 相關次數: | 點閱:54 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要利用電子束微影系統等半導體奈米製程技術,在氧化鋁基板上製作氮化鎵奈米圓柱設計基於可見光範圍中,具有與入射光偏振無關以及寬頻特性的超穎光學(metaoptics)元件。奈米圓柱中所產生的波導模態以及導模共振,利用改變奈米圓柱之直徑,使在設計波長中達成360度之相位變化並同時所有直徑之奈米圓柱保有相當高的穿透率。透過對所設計之奈米結構尺寸的優化,將達成360度相位變化並保有高穿透率的性質拓展到接近全部可見光範圍。在本文中主要展示了三種不同的光學元件,分別是光束偏折超穎表面(beam deflection metasurface)、超穎聚焦透鏡與集成以上兩者的斜聚焦超穎透鏡,上述光學元件在可見光波長範圍中皆擁有偏振無關與寬頻之特性。在數值模擬結果中,超穎聚焦透鏡與斜聚焦透鏡在可見光範圍中皆有良好的聚焦效果,光束偏轉超穎表面在設計波長532奈米中擁有高達94%之偏轉效果,並在波長480奈米到680奈米的波長範圍中皆擁有高於50%的偏轉效果。
關鍵字:氮化鎵、介電質超穎表面、超穎透鏡、斜聚焦透鏡、可見光寬頻、偏振無關
Recently, metasurfaces have gained a great attention due to their achievements of wavefront engineering. However, metasurfaces usually suffer from low working efficiency and narrow operating bandwidth. Although the Pancharatnam–Berry phase-based metasurface is able to expand the working bandwidth, this approach is limited to circularly polarized light. Here, we design dielectric nanocylinders to address the issue. By controlling the diameter of nanocylinder, these structures possess strong resonance out of the central wavelength and still cover full 2π phase modulation at target wavelengths. Thus, we optimize the physical dimensions of nanocylinders to generate appropriate transmission and phase response in the visible, expanding the working wavelength into nearly whole visible window. In this letter, we demonstrate three different optical elements, including on-axis focusing metalens, off-axis focusing metalens, and gradient metasurfaces. All these elements have broadband and polarization-insensitive properties in the visible. According to the simulation results, both on-axis and off-axis focusing metalenses have great focusing efficiency across the entire visible spectrum. The gradient metasurface shows ~94% deflection efficiency at a wavelength of 532nm and over 50% efficiency for 200 nm bandwidth in average.
Key words: Gallium nitride, Dielectric metasurfaces, Metalens, Off-axis focusing metalens, broadband response, polarization independent.
[1] Y. Liu, and X. Zhang, Metamaterials: a new frontier of science and technology, Chem. Soc. Rev. 40, 2494-2507 (2011).
[2] N. I. Zheludev, and Y. S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11, 917-924 (2012).
[3] V. G. Veselago, Electrodynamics of substances with simultaneously negative and, Usp. Fiz. Nauk 92, 517 (1967).
[4] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966-3969 (2000).
[5] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292, 77 (2001).
[6] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184-4187 (2000).
[7] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, Optical activity in planar chiral metamaterials: Theoretical study, Physical Review A 76, 023811 (2007).
[8] E. Plum, V. A. Fedotov, and N. I. Zheludev, Planar metamaterial with transmission and reflection that depend on the direction of incidence, Appl. Phys. Lett. 94, 131901 (2009).
[9] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Chiral metamaterials: simulations and experiments, J. Opt. A: Pure Appl. Opt. 11, 114003 (2009).
[10] S. Palomba, M. Danckwerts, and L. Novotny, Nonlinear plasmonics with gold nanoparticle antennas, J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[11] J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing, Phys. Rev. Lett. 103, 266802 (2009).
[12] J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, An optical cloak made of dielectrics, Nat. Mater. 8, 568-571 (2009).
[13] Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett. 102, 093901 (2009).
[14] B. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen, Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array, Physical Review B 81, 115424 (2010).
[15] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires, Science 321, 930 (2008).
[16] D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface, IEEE Trans. Antennas Propag. 51, 2713-2722 (2003).
[17] R. W. Wood, Anomalous diffraction gratings, Physical Review 48, 928-936 (1935).
[18] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, Metasurfaces: From microwaves to visible, Phys. Rep. 634, 1-72 (2016).
[19] N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Shaping complex microwave fields in reverberating media with binary tunable metasurfaces, Sci. Rep. 4, 6693 (2014).
[20] Y. Pang, Y. Li, M. Yan, D. Liu, J. Wang, Z. Xu, and S. Qu, Hybrid metasurfaces for microwave reflection and infrared emission reduction, Opt. Express 26, 11950-11958 (2018).
[21] P. C. Wu, R. A. Pala, G. Kafaie Shirmanesh, W.-H. Cheng, R. Sokhoyan, M. Grajower, M. Z. Alam, D. Lee, and H. A. Atwater, Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces, Nat. Commun. 10, 3654 (2019).
[22] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin, and M. D. Lukin, Quantum metasurfaces with atom arrays, Nat. Phys. 16, 676-681 (2020).
[23] P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, Metasurface-enabled remote quantum interference, Phys. Rev. Lett. 115, 025501 (2015).
[24] K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H.-P. Chung, M. Parry, I. I. Kravchenko, Y.-H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, Quantum metasurface for multiphoton interference and state reconstruction, Science 361, 1104 (2018).
[25] H. Kwon, E. Arbabi, S. M. Kamali, M. Faraji-Dana, and A. Faraon, Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces, Nat. Photonics 14, 109-114 (2020).
[26] D. Ramaccia, D. L. Sounas, A. Alù, A. Toscano, and F. Bilotti, Phase-induced frequency conversion and doppler effect with time-modulated metasurfaces, IEEE Trans. Antennas Propag. 68, 1607-1617 (2020).
[27] C. Zhou, W.-B. Lee, C.-S. Park, S. Gao, D.-Y. Choi, and S.-S. Lee, Multifunctional beam manipulation at telecommunication wavelengths enabled by an all-dielectric metasurface doublet, Adv. Opt. Mater. 8, 2000645 (2020).
[28] X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, High-efficiency transmissive programmable metasurface for multimode OAM generation, Adv. Opt. Mater. 8, 2000570 (2020).
[29] I. Bashir, and M. Carley, Development of 3D boundary element method for the simulation of acoustic metamaterials/metasurfaces in mean flow for aerospace applications, Int. J. Aeroacoust. 19, 324-346 (2020).
[30] J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, Dynamic reflection phase and polarization control in metasurfaces, Nano Lett. 17, 407-413 (2017).
[31] I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam, and J. Rho, Outfitting next generation displays with optical metasurfaces, ACS Photonics 5, 3876-3895 (2018).
[32] Z. Li, W. Wang, D. Rose奈米ann, D. A. Czaplewski, X. Yang, and J. Gao, All-metal structural color printing based on aluminum plasmonic metasurfaces, Opt. Express 24, 20472-20480 (2016).
[33] Z. Li, W. Liu, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, Arbitrary manipulation of light intensity by bilayer aluminum metasurfaces, Adv. Opt. Mater. 7, 1900260 (2019).
[34] S. Peiris, J. McMurtrie, and H.-Y. Zhu, Metal nanoparticle photocatalysts: emerging processes for green organic synthesis, Catal. Sci. Technol. 6, 320-338 (2016).
[35] B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, GaN metalens for pixel-level full-color routing at visible light, Nano Lett. 17, 6345-6352 (2017).
[36] R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, Broadband high-efficiency dielectric metasurfaces for the visible spectrum, Proceedings of the National Academy of Sciences 113, 10473 (2016).
[37] P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, Recent advances in planar optics: from plasmonic to dielectric metasurfaces, Optica 4, 139-152 (2017).
[38] J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, Active tuning of all-dielectric metasurfaces, ACS Nano 9, 4308-4315 (2015).
[39] T. Badloe, J. Mun, and J. Rho, Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors, J. Nanomater. 2017, 2361042 (2017).
[40] Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. li, L. Zhou, J. Liu, D. Stellinga, C. Reardon, T. Krauss, and X. Wang, Efficient silicon metasurfaces for visible light, ACS Photonics 4, 6b00740 (2016).
[41] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, High-efficiency dielectric huygens’ surfaces, Adv. Opt. Mater. 3, 813-820 (2015).
[42] A. Kuznetsov, A. Miroshnichenko, M. Brongersma, Y. Kivshar, and B. Luk'yanchuk, Optically resonant dielectric nanostructures, Science 354, aag2472-aag2472 (2016).
[43] S. Kruk, B. Hopkins, I. Kravchenko, A. Miroshnichenko, D. Neshev, and Y. Kivshar, Broadband highly-efficient dielectric metadevices for polarization control, APL Photonics 1, 030801 (2016).
[44] A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12, 3749-3755 (2012).
[45] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano 7, 7824-7832 (2013).
[46] D. Smirnova, and Y. S. Kivshar, Multipolar nonlinear nanophotonics, Optica 3, 1241-1255 (2016).
[47] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, Nonradiating anapole modes in dielectric nanoparticles, Nat. Commun. 6, 8069 (2015).
[48] V. Raghunathan, J. Deka, S. Menon, R. Biswas, and L. K. A.S, Nonlinear optics in dielectric guided-mode resonant structures and resonant metasurfaces, Micromachines 11, 11040449 (2020).
[49] M.-A. Mattelin, J. Missinne, B. De Coensel, and G. Van Steenberge, Imprinted polymer-based guided mode resonance grating strain sensors, Sensors 20, 20113221 (2020).
[50] G. Pitruzzello, and T. F. Krauss, Photonic crystal resonances for sensing and imaging, J. Opt. 20, 073004 (2018).
[51] K. Yeong Hwan, and M. Robert, Zero-contrast silicon-based metasurfaces: resonance physics and applications, in Proc.SPIE 10356, 22 (2017).
[52] T. Yuusuke, H. Masanobu, and N. Yoshiki, Optical magnetic field sensor based on guided-mode resonance with Ni subwavelength grating/waveguide structure, in Proc.SPIE 10928,64(2019).
[53] Encyclopedia Britannica inc. (1995).
[54] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334, 333 (2011).
[55] F. Monticone, and A. Alù, Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials, Chin. Phys. B 23, 047809 (2014).
[56] WXS Science and Technology Co.