| 研究生: |
黃婉綸 Huang, Wan-Lun |
|---|---|
| 論文名稱: |
探討薑黃素及其衍生物在阿茲海默氏症疾病動物模式中治療可行性的評估 The Potential of Curcumin and its Derivatives in the Treatment of Alzheimer’s Disease in Transgenic Animal Model |
| 指導教授: |
蔡坤哲
Tsai, Kuen-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 阿茲海默症 、薑黃素 、發炎 、認知功能 、β-澱粉樣蛋白斑塊 |
| 外文關鍵詞: | Alzheimer’s disease, curcumin, inflammation, cognitive function, β-amyloid |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默氏症(Alzheimer’s disease)是一種好發在老年的神經退化性疾病,該疾病導致患者認知功能逐漸下降,其病理特徵包含細胞內神經纖維糾結,以及細胞外β-澱粉樣蛋白的沉積,這些沉積物會造成神經細胞死亡,並造成認知功能的受損。阿茲海默氏症的治療方式受到全球矚目,但目前仍無法有效的治癒該疾病,因此治療策略的開發極為迫切。薑黃素(Curcumin)是一種天然的化合物,其可通過血腦屏障(Blood-brain barrier),且具有抗發炎(anti-inflammation),以及抗氧化(anti-oxidant)的效果。有研究指出,薑黃素具有治療阿茲海默氏症的潛力,但因吸收效果不良及代謝過於迅速而展現出較差的生物可利用率,所以為了改善其生物可利用性,本研究使用不同的包裹材料以及修飾其官能基,進而提高其吸收率,探討薑黃素衍生物是否能減少腦中β-澱粉樣蛋白斑塊沉積及改善發炎反應。期盼本項研究可以提供阿茲海默氏症之新型治療策略,造福人群。首先,我們發現阿茲海默氏症疾病模式老鼠的認知行為缺陷,且在大腦中發現大量的β-澱粉樣蛋白斑塊的沉積,及高量的膠質細胞增生。後續利用餵食方式給予疾病模式老鼠傳統薑黃素以及薑黃衍生物持續四個月,發現薑黃衍生物可以改善疾病模式老鼠認知行為之缺陷。最終,發現在給予薑黃衍生物後,可能藉由微小膠細胞(microglia)改善β-澱粉樣蛋白斑塊的清除。總結,本篇論文發現在阿茲海默氏症中由β-澱粉樣蛋白斑塊大量沉積所引起的發炎情況,在利用薑黃衍生物的抗發炎能力後,成功的減緩大腦中發炎的現象,有效地減少β-澱粉樣蛋白斑塊、及恢復認知功能,並且提供可能的神經保護策略。
Alzheimer's disease (AD) is a common neurodegenerative disorder with a high prevalence in the elderly. It is characterized by progressive decline in cognitive function. The pathological hallmarks of AD include the presence of intracellular neurofibrillary tangles and extracellular beta-amyloid (Aβ) plaques that cause neuronal and synaptic loss in the brain. These depositions disrupt the interactions between neurons, cause cell death, and lead to impairment of cognitive function. Although AD therapy has garnered attention worldwide, a viable cure remains elusive and efficient treatment is still in urgent need. Curcumin is a natural compound that can penetrate the blood-brain barrier and has anti-inflammatory and anti-oxidant effects in animal models, implying the therapeutic potential of curcumin in the treatment of AD. However, curcumin exhibits poor bioavailability due to malabsorption and rapid metabolism. Therefore, new derivative compounds of curcumin were developed to improve its bioavailability. In this study, we investigated whether curcumin derivatives could reduce the level of Aβ and resolve the inflammation in a brain with AD. We expect this research to provide insights and discover a novel therapeutic strategy in AD treatment. First, we found that the triplex AD transgenic mice had cognitive dysfunction. A large amount of Aβ deposition and significant gliosis were present in the brain. We orally administered curcumin and its derivatives to the transgenic mice for 4 months and found that curcumin derivatives improved behaviour deficits in the AD mouse model. We identified that Aβ clearance through microglia was also improved after treatment with curcumin derivatives. In summary, we found that administration of curcumin derivatives can ameliorate gliosis in the transgenic mice, reduce the level of Aβ, and improve cognitive functions. We expect our findings to provide a potential neuroprotective strategy for AD.
2016 Alzheimer's disease facts and figures. (2016). Alzheimers Dement, 12(4), 459-509.
Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews Neuroscience, 7, 41. doi:10.1038/nrn1824
Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: the Indian solid gold. Adv Exp Med Biol, 595, 1-75. doi:10.1007/978-0-387-46401-5_1
Allan, S. M., & Rothwell, N. J. (2001). Cytokines and acute neurodegeneration. Nature Reviews Neuroscience, 2, 734. doi:10.1038/35094583
Amor, S., Puentes, F., Baker, D., & van der Valk, P. (2010). Inflammation in neurodegenerative diseases. Immunology, 129(2), 154-169. doi:10.1111/j.1365-2567.2009.03225.x
Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Mol Pharm, 4(6), 807-818. doi:10.1021/mp700113r
Balez, R., Steiner, N., Engel, M., Muñoz, S. S., Lum, J. S., Wu, Y., . . . Ooi, L. (2016). Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Scientific Reports, 6, 31450. doi:10.1038/srep31450
Bates, K. A., Fonte, J., Robertson, T. A., Martins, R. N., & Harvey, A. R. (2002). Chronic gliosis triggers Alzheimer's disease-like processing of amyloid precursor protein. Neuroscience, 113(4), 785-796.
Begum, A. N., Jones, M. R., Lim, G. P., Morihara, T., Kim, P., Heath, D. D., . . . Frautschy, S. A. (2008). Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. J Pharmacol Exp Ther, 326(1), 196-208. doi:10.1124/jpet.108.137455
Bolos, M., Perea, J. R., & Avila, J. (2017). Alzheimer's disease as an inflammatory disease. Biomol Concepts, 8(1), 37-43. doi:10.1515/bmc-2016-0029
Brion, J. P. (1998). Neurofibrillary Tangles and Alzheimer’s Disease. European Neurology, 40(3), 130-140.
Canzoniero, L. M., & Snider, B. J. (2005). Calcium in Alzheimer's disease pathogenesis: too much, too little or in the wrong place? J Alzheimers Dis, 8(2), 147-154; discussion 209-115.
Caruso, D., Barron, A. M., Brown, M. A., Abbiati, F., Carrero, P., Pike, C. J., . . . Melcangi, R. C. (2013). Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiology of aging, 34(4), 1080-1089. doi:10.1016/j.neurobiolaging.2012.10.007
Cipriani, G., Dolciotti, C., Picchi, L., & Bonuccelli, U. (2011). Alzheimer and his disease: a brief history. Neurological Sciences, 32(2), 275-279. doi:10.1007/s10072-010-0454-7
Clayton, K. A., Van Enoo, A. A., & Ikezu, T. (2017). Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Frontiers in Neuroscience, 11, 680. doi:10.3389/fnins.2017.00680
Cole, G. M., Teter, B., & Frautschy, S. A. (2007). Neuroprotective effects of curcumin. Adv Exp Med Biol, 595, 197-212. doi:10.1007/978-0-387-46401-5_8
Cole, S. L., & Vassar, R. (2008). The Role of Amyloid Precursor Protein Processing by BACE1, the β-Secretase, in Alzheimer Disease Pathophysiology. The Journal of Biological Chemistry, 283(44), 29621-29625. doi:10.1074/jbc.R800015200
Cummings, J., Lee, G., Ritter, A., & Zhong, K. (2018). Alzheimer's disease drug development pipeline: 2018. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 4, 195-214. doi:https://doi.org/10.1016/j.trci.2018.03.009
Diack, A. B., Alibhai, J. D., Barron, R., Bradford, B., Piccardo, P., & Manson, J. C. (2016). Insights into Mechanisms of Chronic Neurodegeneration. International Journal of Molecular Sciences, 17(1), 82. doi:10.3390/ijms17010082
Du, X., Wang, X., & Geng, M. (2018). Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration, 7, 2. doi:10.1186/s40035-018-0107-y
Erland, L. A. E., & Saxena, P. K. (2017). Melatonin Natural Health Products and Supplements: Presence of Serotonin and Significant Variability of Melatonin Content. Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine, 13(2), 275-281. doi:10.5664/jcsm.6462
Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer's Disease: Targeting the Cholinergic System. Current Neuropharmacology, 14(1), 101-115. doi:10.2174/1570159X13666150716165726
Frost, G. R., & Li, Y.-M. (2017). The role of astrocytes in amyloid production and Alzheimer's disease. Open Biology, 7(12), 170228. doi:10.1098/rsob.170228
Gao, H.-M., & Hong, J.-S. (2008). Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends in immunology, 29(8), 357-365. doi:10.1016/j.it.2008.05.002
Garcia-Alloza, M., Borrelli, L. A., Rozkalne, A., Hyman, B. T., & Bacskai, B. J. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem, 102(4), 1095-1104. doi:10.1111/j.1471-4159.2007.04613.x
Ghosh, S., Banerjee, S., & Sil, P. C. (2015). The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol, 83, 111-124. doi:10.1016/j.fct.2015.05.022
Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., . . . Orgogozo, J. M. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64(9), 1553-1562. doi:10.1212/01.wnl.0000159740.16984.3c
Gold, M. (2017). Phase II clinical trials of anti–amyloid β antibodies: When is enough, enough? Alzheimer's & Dementia: Translational Research & Clinical Interventions, 3(3), 402-409. doi:https://doi.org/10.1016/j.trci.2017.04.005
Goozee, K. G., Shah, T. M., Sohrabi, H. R., Rainey-Smith, S. R., Brown, B., Verdile, G., & Martins, R. N. (2016). Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer's disease. Br J Nutr, 115(3), 449-465. doi:10.1017/s0007114515004687
Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Reviews Molecular Cell Biology, 8, 101. doi:10.1038/nrm2101
Hadavi, D., & Poot, A. A. (2016). Biomaterials for the Treatment of Alzheimer’s Disease. Frontiers in Bioengineering and Biotechnology, 4, 49. doi:10.3389/fbioe.2016.00049
Hamaguchi, T., Ono, K., & Yamada, M. (2010). REVIEW: Curcumin and Alzheimer's disease. CNS Neurosci Ther, 16(5), 285-297. doi:10.1111/j.1755-5949.2010.00147.x
Hardy, J., & Selkoe, D. J. (2002). The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics. Science, 297(5580), 353.
Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and molecular life sciences : CMLS, 65(11), 1631-1652. doi:10.1007/s00018-008-7452-4
He, Y., Yue, Y., Zheng, X., Zhang, K., Chen, S., & Du, Z. (2015). Curcumin, inflammation, and chronic diseases: how are they linked? Molecules, 20(5), 9183-9213. doi:10.3390/molecules20059183
Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., . . . Kummer, M. P. (2015). Neuroinflammation in Alzheimer's disease. Lancet Neurol, 14(4), 388-405. doi:10.1016/s1474-4422(15)70016-5
Huang, Y., & Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell, 148(6), 1204-1222. doi:10.1016/j.cell.2012.02.040
Hung, S.-Y., & Fu, W.-M. (2017). Drug candidates in clinical trials for Alzheimer’s disease. Journal of Biomedical Science, 24, 47. doi:10.1186/s12929-017-0355-7
Irwin, D. J., Cairns, N. J., Grossman, M., McMillan, C. T., Lee, E. B., Van Deerlin, V. M., . . . Trojanowski, J. Q. (2015). Frontotemporal Lobar Degeneration: Defining Phenotypic Diversity Through Personalized Medicine. Acta neuropathologica, 129(4), 469-491. doi:10.1007/s00401-014-1380-1
Isik, A. T. (2010). Late onset Alzheimer’s disease in older people. Clinical Interventions in Aging, 5, 307-311. doi:10.2147/CIA.S11718
Jiang, A. J., Jiang, G., Li, L. T., & Zheng, J. N. (2015). Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells. Mol Biol Rep, 42(1), 267-275. doi:10.1007/s11033-014-3769-2
Karthivashan, G., Ganesan, P., Park, S.-Y., Kim, J.-S., & Choi, D.-K. (2018). Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Delivery, 25(1), 307-320. doi:10.1080/10717544.2018.1428243
Kettenmann, H., & Verkhratsky, A. (2011). [Neuroglia--living nerve glue]. Fortschr Neurol Psychiatr, 79(10), 588-597. doi:10.1055/s-0031-1281704
Klinger, N. V., & Mittal, S. (2016). Therapeutic Potential of Curcumin for the Treatment of Brain Tumors. Oxidative Medicine and Cellular Longevity, 2016, 9324085. doi:10.1155/2016/9324085
Kocaadam, B., & Şanlier, N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), 2889-2895. doi:10.1080/10408398.2015.1077195
Kotani, R., Urano, Y., Sugimoto, H., & Noguchi, N. (2017). Decrease of Amyloid-beta Levels by Curcumin Derivative via Modulation of Amyloid-beta Protein Precursor Trafficking. J Alzheimers Dis, 56(2), 529-542. doi:10.3233/jad-160794
Kumar, A., Singh, A., & Ekavali. (2015). A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep, 67(2), 195-203. doi:10.1016/j.pharep.2014.09.004
Kuo, J. J., Chang, H. H., Tsai, T. H., & Lee, T. Y. (2012). Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med, 30(3), 673-679. doi:10.3892/ijmm.2012.1049
Lee, W.-H., Loo, C.-Y., Bebawy, M., Luk, F., Mason, R. S., & Rohanizadeh, R. (2013). Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Current Neuropharmacology, 11(4), 338-378. doi:10.2174/1570159X11311040002
Lemere, C. A., & Masliah, E. (2010). Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nature reviews. Neurology, 6(2), 108-119. doi:10.1038/nrneurol.2009.219
Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci, 21(21), 8370-8377.
Lista, S., O'Bryant, S. E., Blennow, K., Dubois, B., Hugon, J., Zetterberg, H., & Hampel, H. (2015). Biomarkers in Sporadic and Familial Alzheimer's Disease. J Alzheimers Dis, 47(2), 291-317. doi:10.3233/jad-143006
Liu, Z.-J., Li, Z.-H., Liu, L., Tang, W.-X., Wang, Y., Dong, M.-R., & Xiao, C. (2016). Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease. Frontiers in Pharmacology, 7, 261. doi:10.3389/fphar.2016.00261
MacLeod, R., Hillert, E.-K., Cameron, R. T., & Baillie, G. S. (2015). The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Science OA, 1(3), FSO11. doi:10.4155/fso.15.9
Maria, S.-G. A., Ignacio, M.-M. J., Ramírez-Pineda Jose, R., Marisol, L.-R., Edison, O., & Patricia, C.-G. G. (2015). The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 93, 134-145. doi:10.1016/j.neuropharm.2015.01.027
Meraz-Ríos, M. A., Toral-Rios, D., Franco-Bocanegra, D., Villeda-Hernández, J., & Campos-Peña, V. (2013). Inflammatory process in Alzheimer's Disease. Frontiers in Integrative Neuroscience, 7, 59. doi:10.3389/fnint.2013.00059
Mirmosayyeb, O., Tanhaei, A., Sohrabi, H. R., Martins, R. N., Tanhaei, M., Najafi, M. A., . . . Meamar, R. (2017). Possible Role of Common Spices as a Preventive and Therapeutic Agent for Alzheimer's Disease. International Journal of Preventive Medicine, 8, 5. doi:10.4103/2008-7802.199640
Monroy, A., Lithgow, G. J., & Alavez, S. (2013). Curcumin and neurodegenerative diseases. BioFactors (Oxford, England), 39(1), 122-132. doi:10.1002/biof.1063
Murphy, M. P., & LeVine, H. (2010). Alzheimer’s Disease and the β-Amyloid Peptide. Journal of Alzheimer's disease : JAD, 19(1), 311. doi:10.3233/JAD-2010-1221
Novati, A., Hentrich, T., Wassouf, Z., Weber, J. J., Yu-Taeger, L., Déglon, N., . . . Schulze-Hentrich, J. M. (2018). Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Scientific Reports, 8(1), 5803. doi:10.1038/s41598-018-24243-z
Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., . . . LaFerla, F. M. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 39(3), 409-421.
Pan, M. H., Huang, T. M., & Lin, J. K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos, 27(4), 486-494.
Patel, K. R. (2015). Biogen's aducanumab raises hope that Alzheimer's can be treated at its source. Manag Care, 24(6), 19.
Patterson, C., Feightner, J. W., Garcia, A., Hsiung, G. Y. R., MacKnight, C., & Sadovnick, A. D. (2008). Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ : Canadian Medical Association Journal, 178(5), 548-556. doi:10.1503/cmaj.070796
Perl, D. P. (2010). Neuropathology of Alzheimer's Disease. The Mount Sinai Journal of Medicine, New York, 77(1), 32-42. doi:10.1002/msj.20157
Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., . . . Wallace, R. B. (2007). Prevalence of Dementia in the United States: The Aging, Demographics, and Memory Study. Neuroepidemiology, 29(1-2), 125-132. doi:10.1159/000109998
Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2014). Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice. Cancer Research and Treatment : Official Journal of Korean Cancer Association, 46(1), 2-18. doi:10.4143/crt.2014.46.1.2
Prince, M., Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., & Prina, M. (2015). World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends.
Puzzo, D., Lee, L., Palmeri, A., Calabrese, G., & Arancio, O. (2014). Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines. Biochemical pharmacology, 88(4), 450-467. doi:10.1016/j.bcp.2014.01.011
Ransohoff, R. M. (2016). How neuroinflammation contributes to neurodegeneration. Science, 353(6301), 777-783. doi:10.1126/science.aag2590
Ross, C. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nat Med, 10 Suppl, S10-17. doi:10.1038/nm1066
Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., . . . Seubert, P. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400(6740), 173-177. doi:10.1038/22124
Sevigny, J., Chiao, P., Bussiere, T., Weinreb, P. H., Williams, L., Maier, M., . . . Sandrock, A. (2016). The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature, 537(7618), 50-56. doi:10.1038/nature19323
Shao, W., Yu, Z., Chiang, Y., Yang, Y., Chai, T., Foltz, W., . . . Jin, T. (2012). Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One, 7(1), e28784. doi:10.1371/journal.pone.0028784
Shi, X., Zheng, Z., Li, J., Xiao, Z., Qi, W., Zhang, A., . . . Fang, Y. (2015). Curcumin inhibits Abeta-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett, 594, 105-110. doi:10.1016/j.neulet.2015.03.045
Srinivasan, V., Pandi-Perumal, S. R., Cardinali, D. P., Poeggeler, B., & Hardeland, R. (2006). Melatonin in Alzheimer's disease and other neurodegenerative disorders. Behavioral and Brain Functions, 2, 15-15. doi:10.1186/1744-9081-2-15
Swerdlow, R. H. (2007). Pathogenesis of Alzheimer’s disease. Clinical Interventions in Aging, 2(3), 347-359.
Tsai, K.-J., Yang, C.-H., Fang, Y.-H., Cho, K.-H., Chien, W.-L., Wang, W.-T., . . . Shen, C.-K. J. (2010). Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. The Journal of Experimental Medicine, 207(8), 1661-1673. doi:10.1084/jem.20092164
Verkhratsky, A., Olabarria, M., Noristani, H. N., Yeh, C.-Y., & Rodriguez, J. J. (2010). Astrocytes in Alzheimer’s disease. Neurotherapeutics, 7(4), 399-412. doi:10.1016/j.nurt.2010.05.017
Wang, I. F., Guo, B.-S., Liu, Y.-C., Wu, C.-C., Yang, C.-H., Tsai, K.-J., & Shen, C.-K. J. (2012). Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 15024-15029. doi:10.1073/pnas.1206362109
Wen, M. M., El-Salamouni, N. S., El-Refaie, W. M., Hazzah, H. A., Ali, M. M., Tosi, G., . . . Hanafy, A. S. (2017). Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges. J Control Release, 245, 95-107. doi:10.1016/j.jconrel.2016.11.025
Wu, Y.-T., Beiser, A. S., Breteler, M. M. B., Fratiglioni, L., Helmer, C., Hendrie, H. C., . . . Brayne, C. (2017). The changing prevalence and incidence of dementia over time — current evidence. Nature Reviews Neurology, 13, 327. doi:10.1038/nrneurol.2017.63
Wyss-Coray, T., & Rogers, J. (2012). Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med, 2(1), a006346. doi:10.1101/cshperspect.a006346
Yacoubian, T. A. (2017). Chapter 1 - Neurodegenerative Disorders: Why Do We Need New Therapies? In A. Adejare (Ed.), Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders (pp. 1-16): Academic Press.
Yan, R., & Vassar, R. (2014). Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet neurology, 13(3), 319-329. doi:10.1016/S1474-4422(13)70276-X
Yang, C. L., Liu, Y. Y., Ma, Y. G., Xue, Y. X., Liu, D. G., Ren, Y., . . . Li, Z. (2012). Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One, 7(5), e37960. doi:10.1371/journal.pone.0037960
Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., . . . Cole, G. M. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem, 280(7), 5892-5901. doi:10.1074/jbc.M404751200
Yiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6(1), 19-33. doi:10.1177/1756285612461679
校內:2023-12-31公開