研究生: |
黃欣如 Huang, Sin-Ru |
---|---|
論文名稱: |
奈米碳管於高分子液相與薄膜中的分佈與取向之調控 Study on the alignment and selective dispersion of carbon nanotubes within polymeric liquid phases and thin film |
指導教授: |
阮至正
Ruan, Jr-Jeng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 聚芴高分子 、奈米碳管 、高分子相分離 |
外文關鍵詞: | Polyfluorenes, carbon nanotubes, phase separation |
相關次數: | 點閱:85 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雖然具有許多優異的光電與機械性質,但是由於奈米碳管傾向聚集,不易均勻的分散在薄膜中。因此添加奈米碳管於複合材料中,一直無法獲得預期的作用。藉由π-π交互作用的形成,奈米碳管與聚芴高分子Poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO)之間有很好的親和性。因此當PFO與非共軛高分子Poly(methyl methacrylate) (PMMA)在溶液中形成不同的液相時,摻入溶液中的奈米碳管有機會選擇性地分散於PFO液相中。於是,溶液中不同高分子液相的形成,成為調控奈米碳管分佈的方法。
此研究首先藉由改變溶液中的混摻比例、濃度、聚芴(Polyfluorenes)高分子側鏈長度與基材性質來探討混摻的高分子成份於析出薄膜中分佈的情形與調控機制。於溶液中添加奈米碳管後,發現奈米碳管於高分子溶液中有選擇性分佈的特性。由電子顯微鏡的觀察也證實了奈米碳管選擇性地分佈於PFO區域中。這個研究成果也說明了,不同的高分子液相會於溶液中形成,並影響奈米碳管的分佈。在析出薄膜中,也觀察到PFO板晶的成長與堆疊能夠驅使奈米碳管有不同的分散與排列行為。
於110 °C持溫時,PF12相會由原本的網狀分佈逐漸聚集成柱狀區域。散佈於PF12相內的的奈米碳管也逐漸以垂直於薄膜的取向聚集在柱狀區域中。因此,液晶相的流動與聚集也發現是造成奈米碳管於薄膜中垂直分佈的契機。
In this research, liquid phases of Poly(9,9-di-n-octylfluorenyl-2,7-diyl)(PFO) and Poly(methyl methacrylate)(PMMA)are developed in Toluene solution. By changing the compositional ratios, concentration, length of polymer side chain in solution, the morphology and two- phase distribution of spin- coated thin films are discussed. According to the pi-pi interaction between conjugated polymer and carbon nanotubes, we have observed the selective distribution of carbon nanotubes within PFO liquid phase. On spin-coated thin film, we’ve also observed the alignment of CNTs is further influenced by the stacking of PFO crystalline lamellae. The orientational alignment of CNTs could be developed at specific temperature and specific diameter of CNTs. When PFO is replaced by
Poly (9, 9-di-n-dodecylfluorenyl-2,7-diyl) (PF12), the flow of liquid phase at selected temperatures is motivated to form rectangular board-like domains. CNTs are found to align vertically in PF12 domains in order to maintain the interactions with the matrix of PF12.
1. Flory, P.I. Thermodynamics of high polymer solutions. Journal of Chemical Physics, 1942, 10, 51-61.
2. Jones, R. A. L.; Norton, L. J.; Kramer, E. J.; Bates, F. S.; Wiltzius, P. Surface- directed Spinodal Decomposition. Physical Review Letters, 1991, 66, 1326-1329.
3. Koningsv, R.; Staverma, Aj. Liquid-liquid phase separation in multicomponent polymer solutios: 2. Crytical States. Journal of Polymer Science Part A-2: Polymer Physics, 1968, 6, 325-334.
4. Koningsv, R.; Staverma, Aj. Liquid-liquid phase separation in multicomponent polymer solutios: 5. Separation into three liquid phases. Kolloid-Zeitschrift and Zeitschrift Fur Polymer, 1967, 220, 31-35.
5. Koningsveld, R.; Kleintjens, L. A.; Markert, G. Liquid-liquid phase separation in multicomponent polymer systems: 16. Mixtures of random copolymers. Macromolecules, 1977, 10, 1105-1108.
6. Qiu, L.; Lim, J. A.; Wang, X.; Lee, W. H.; Hwang, M.; Cho, K. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors. Advanced Materials, 2008, 20, 1141-1145.
7. Lee, W. H.; Park, Y. D. Organic Semiconductor/Insulator Polymer Blends for High-Performance Organic Transistors. Polymers, 2014, 6, 1057-1073.
8. Heriot, S. Y.; Jones, R. A. L. An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nature Materials, 2005, 4, 782-786.
9. Krausch, G.; Kramer, E. J.; Rafailovich, M. H.; Sokolov, J. Self-assembly of a homopolymer mixture via phase separation. Applied Physics Letters, 1994, 64, 2655-2657.
10. Zhao, K.; Zhou, G.; Wang, Q.; Han, Y. C; Wang, L. X.; Ma, D. G. Phase Separation in Poly(9,9-dioctylfluoxene)/Poly(methyl methacrylate) Blends. Macromolecular Chemistry and Physics, 2010, 211, 313-320.
11. Walheim, S.; Boltau, M.; Mlynek, J.; Krausch, G.; Steiner, U. Structure formation via polymer demixing in spin-cast films. Macromolecules, 1997, 30, 4995-5003.
12. Tanaka, K.; Takahara, A.; Kajiyama, T. Film thickness dependence of the surface structure of immiscible polystyrene/poly(methyl methacrylate) blends. Macromolecules, 1996, 29, 3232-3239.
13. Li, Y.; Hu, K.; Han, X.; Yang, Q. Y.; Xiong, Y. F.; Bai, Y. H.; Guo, X.; Cui, Y. S.; Yuan, C. S.; Ge, H. X.; Chen, Y. F. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films. Langmuir, 2016, 32, 3670-3678.
14. Boltau, M.; Walheim, S.; Mlynek, J.; Krausch, G.; Steiner, U. Surface-induced structure formation of polymer blends on patterned substrates. Nature, 1998, 391, 877-879.
15. Kuo, C. C.; Lin, C. H.; Chen, W. C. Morphology and photophysical properties of light-emitting electrospun nanofibers prepared from poly(fluorene) derivative/PMMA blends. Macromolecules, 2007, 40, 6959-6966.
16. Chappell, J.; Lidzey, D. G. Phase separation in polyfluorene-polymethylmethacrylate blends studied using UV near-field microscopy. Journal of Microscopy-Oxford, 2003, 209, 188-193.
17. Chou, H. L.; Hsu, S. Y.; Wei, P. K. Light emission in phase separated conjugated and non-conjugated polymer blends. Polymer, 2005, 46, 4967-4970.
18. Iyengar, N. A.; Harrison, B.; Duran, R. S.; Schanze, K. S.; Reynolds, J. R. Morphology evolution in nanoscale light-emitting domains in MEH-PPV/PMMA blends. Macromolecules, 2003, 36, 8978-8985
19. Ton-That, C.; Shard, A. G.; Teare, D. O. H.; Bradley, R. H. XPS and AFM surface studies of solvent-cast PS/PMMA blends. Polymer, 2001, 42, 1121-1129.
20. Iijima, S. Helical microtubules of graphilitic carbon. Nature, 1991, 354, 56-58.
21. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic- structure of chiral graphene tubules. Applied Physics Letters, 1992, 60, 2204-2206.
22. Papadimitrakopoulos, F.; Ju, S. Y. Materials science - Purity rolled up in a tube. Nature, 2007, 450, 486-487.
23. Fujigaya, T.; Nakashima, N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Science and Technology of Advanced Materials, 2015, 16, 1-21.
24. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Eklund, P. C.; Haddon, R. C. Solution properties of single-walled carbon nanotubes. Science, 1998, 282, 95-98.
25. Chen, Y.; Haddon, R. C.; Fang, S.; Rao, A. M.; Lee, W. H.; Dickey, E. C.; Grulke, E. A.; Pendergrass, J. C.; Chavan, A.; Haley, B. E.; Smalley, R. E. Chemical attachment of organic functional groups to single-walled carbon nanotube material. Journal of Materials Research, 1998, 13, 2423-2431.
26. Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society, 2001, 123, 3838-3839.
27. Zhang, J.; Lee, J. K.; Wu, Y.; Murray, R. W. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Letters, 2003, 3, 403-407.
28. Li, H. P.; Zhou, B.; Lin, Y.; Gu, L. R.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y. P. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. Journal of the American Chemical Society, 2004, 126, 1014-1015.
29. Baskaran, D.; Mays, J. W.; Bratcher, M. S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chemistry of Materials, 2005, 17, 3389-3397.
30. Ajayan, P. M.; Tour, J. M. Materials science - Nanotube composites. Nature, 2007, 447, 1066-1068.
31. Gao, J.; Loi, M. A.; Figueiredo de Carvalho, E. J.; dos Santos, M. C. Selective wrapping and supramolecular structures of polyfluorene-carbon nanotube hybrids. ACS Nano, 2011, 5, 3993-3999.
32. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646.
33. Gomulya, W.; Gao, Jia; Loi, M. A. Conjugated polymer-wrapped carbon nanotubes: physical properties and device applications. European Physical Journal B, 2013, 86, 404.
34. Jakubka, F.; Schiessl, Stefan P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes. Acs Macro Letters, 2012, 1, 815-819.
35. Imin, P.; Cheng, F. and Adronov, A. Supramolecular complexes of single walled carbon nanotubes with conjugated polymers. Polymer Chemistry, 2011, 2, 411-416.
36. Yang, H. L., Bezugly, V.; Kunstmann, J.; Filoramo, A.; Cuniberti, G. Diameter-Selective Dispersion of Carbon Nanotubes via Polymers: A Competition between Adsorption and Bundling. ACS Nano, 2015, 9, 9012-9019.
37. Gomulya, W.; Costanzo, G. D.; de Carvalho, E. J. F.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S. J.; dos Santos, M. C.; Scherf, U.; Loi, M. A. Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping. Advanced Materials, 2013, 25, 2948-2956.
38. Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J.; Park, J. J.; Spakowitz, A.; Galli, G.; Gygi, F.; Wong, P. H. S.; Tol, J. B. H.; Kim, J. M.; Bao, Z. A. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature Communications, 2011, 2, 1-8.
39. Xie, X. L.; Mai, Y. W.; Zhou, X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science & Engineering R-Reports, 2005, 49, 89-112.
40. Thostenson, E.T.; Chou, T. W. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. Journal of Physics D-Applied Physics, 2002, 35, L77-L80.
41. Fujiwara, M.; Oki, E.; Hamada, M.; Tanimoto, Y.; Mukouda, I.; Shimomura, Y. Magnetic orientation and magnetic properties of a single carbon nanotube. Journal of Physical Chemistry A, 2001, 105, 4383-4386.
42. Camponeschi, E.; Vance, R.; Al-Haik, M.; Garmestani, H.; Tannenbaum, R. Properties of carbon nanotube-polymer composites aligned in a magnetic field. Carbon, 2007, 45, 2037-2046.
43. Kimura, T.; Ago, H.; Tobita, M.; Ohshima, S.; Kyotani, M.; Yumura, M. Polymer composites of carbon nanotubes aligned by a magnetic field. Advanced Materials, 2002, 14, 1380-1383.
44. Lynch, M. D.; Patrick, D. L. Organizing carbon nanotubes with liquid crystals. Nano Letters, 2002, 2, 1197-1201.
45. Lo, C. H.; Tsai, M. T.; Liu, B. H.; Isoda, S.; Ruan, J. Oriented association of multiwall carbon nanotubes upon efficient epitaxial organization of polyfluorene. Carbon, 2015. 93, 342-352.