| 研究生: |
程仁毅 Cheng, Jen-I |
|---|---|
| 論文名稱: |
304L不鏽鋼之惰性氣體鎢棒電弧銲及遮蔽金屬電弧銲銲接件在動態剪切負荷下的塑變行為與破壞特性分析 The Plastic Deformation and Fracture Behavior of 304L Stainless Steel GTAW and SMAW Joint under Dynamic Shear Loading |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 動態剪切 、霍普金森扭轉試驗機 、304L不鏽鋼 、破壞特性 、惰性氣體鎢棒電弧銲 、絕熱剪切 、遮蔽金屬電弧銲 、韌窩 、夾雜物 |
| 外文關鍵詞: | Hopkinson torsinal bar, dynamic shear, fracture behavior, 304L stainless steel, GTAW, SMAW, shear band, dimple, inclusion |
| 相關次數: | 點閱:134 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是利用一維彈性扭轉波傳理論為基礎的霍普金森扭轉試驗機(Split Hopkinson Torsional Bar),來探討304L不銹鋼GTAW及SMAW銲件在動態剪切荷載下塑變行為。其測試條件為在室溫下,剪應變速率分別為800s-1、1200s-1、1700s-1、2200s-1及2800s-1等五組不同的扭轉荷載速度,以研究其在動態扭轉荷載下的塑變行為與破壞特性分析,並探討兩者之相關性,同時引用一構成方程式來描述304L之GTAW與SMAW銲件在高速剪切荷載下的塑變行為,以作為工程設計與動態分析時的參考依據。
在巨觀分析中,由實驗結果可得知應變速率對304L不銹鋼GTAW及SMAW銲件之機械性質影響顯著,其塑流應力值均會隨著應變速率的提升而增加。此外,應變速率的提升亦導致材料之加工硬化率、應變速率敏感性及昇溫量的上升,但熱活化體積卻會隨著應變速率提升而下降。且GTAW銲件之塑流應力值、加工硬化率、應變速率敏感性及理論昇溫量均大於SMAW銲件。
在微觀分析中,發現GTAW及SMAW銲件的破壞完全發生於銲道區域中。以SEM做破壞表面之形貌分析,發現GTAW及SMAW銲件的破壞模式均屬於以韌窩為主的延性破壞。本研究將其破壞形貌區分為密集韌窩區與平滑區兩特徵區域討論之。發現隨應變速率之提升,此兩特徵區域形貌有其趨勢性的差異。此外,發現GTAW及SMAW銲件中之銲接夾雜物含量相差甚多,因此在剪切荷載下對其破壞之形貌與應變量造成不同程度之影響。而在OM顯微組織觀察中,證實兩銲件的破壞均起始銲道區域中,且其斷口處因局部大量的剪切塑性變形,其中的δ肥粒鐵明顯地被扭曲變形成一塑性流動的帶狀區域,證實有剪切帶之存在。而微空孔的生成與成長在此延性材料中,對剪切帶的破壞有關鍵性之影響。且夾雜物之存在更加劇了微空孔對剪切破壞的生成。
最後,藉由Kobayashi & Dodd模式之變形構成方程式,可以準確地描述304L不銹鋼GTAW及SMAW銲件的高速剪切塑變行為。
The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel GTAW and SMAW joints are studied by torsional split-Hopkinson bar at room temperature under five strain rates (800s-1, 1200s-1, 1700s-1, 2200s-1 and 2800s-1). Experimental results indicate that strain rate significantly influences the mechanical properties of 304L stainless steel GTAW and SMAW joints. Flow stress, work hardening rate, strain rate sensitivity and deformation heat increase with strain rate, but activation volume decreases. Flow stress, work hardening rate, strain rate sensitivity and deformation heat for GTAW joints are larger than for SMAW joints. SEM fractographs show many dimples, revealing ductile fracture. We divide the fracture surface appearance into two characteristic zones, the densely dimpled and the smooth surfaced zones, and find significant differences between the two zones with increasing strain rate. Besides, comparison of GTAW and SMAW joints shows differing amounts of weld inclusions, which influences fracture appearance and fracture strain. For both joint types, fracture occurs only in the weld zone. Besides, δ ferrite sub-structures in the fusion zone are clearly twisted into band-like features from large localized shear deformation; it is a clear evidence of adiabatic shear fracture. The results indicate that microvoid nucleation and growth play a significant role in shear band formation, and that weld inclusions speed up adiabatic shear fracture formation by void nucleation and growth. The Kobayashi & Dodd constitutive equation accurately describes the high-strain-rate shear plastic behavior for 304L stainless steel GTAW and SMAW joints.
1.J. D. Campbell and W. G. Ferguson, “The Temperature and Strain Dependence of the Shear Strength of Mild Steel”, The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
2.Donald, Peckner; I.M. Bernstein: “Stainless Steels”, McGraw-Hill Publishing Company, 1977.
3.A. Lula, J. Gordon Parr and Albert Hanson: “Stainless Steel”, Metals Park, Ohio :American Society for Metals, 1986.
4.S. L. Semiatin and J. H. Holbrook, ”Plastic Flow Phenomenology of 304L Stainless Steel”, Metallurgical Transactions A, Vol. 14, pp. 1681-1695, August 1983.
5.S. L. Semiatin and J. H. Holbrook, “Failure Behavior of 304L Stainless Steel in Torsion”, Metallurgical Transactions A, Vol.13A, pp. 619-626, 1982.
6.M. G. Stout and P. S. Follansbee, “Strain Rate Sensitivity, Strain Hardening, and Yeild Behaviour of 304L Stainless Steel,” Journal of Engineering Materials and Technology ASME, Vol. 108, pp. 334-353, 1986.
7.D. P. HarveyⅡ, J. B. Terrell, T. S. Sudarshan, M. R. Louthan Jr., “Participation of Hydrogen in the Impact Behaviour of 304L Stainless Steel, Engineering Fracture Mechanics”, Engineering Fracture Mechanics, Vol. 46, pp. 455-464, 1993.
8.W. T. DeLong, G. A. Ostrom, E. R. Szumachowski, “Measurement and Calculation of Ferrite in Stainless-Steel Weld Metal”, Supplement of the Welding Journal, No. 16, pp. 521s-528s, 1956.
9.T. Mohandas, G. Madhusudhan Reddy and Mohammad Naveed, “A Comparative Evolution of Gas Tundsten and Shielded Metal of a Ferrite Stainless Steel”, Journal of Materials Processing Technology, Vol. 94, pp. 133-140, 1999.
10.Byung Sup Rho, Hyun Uk Hong and Soo Woo Nam, “The Effect of δ-ferrite on Fatigue Cracks in 304L Steels”, International Journal of Fatigue, Vol. 22, pp. 683-690, 2000.
11.Tetsumi Yuri, Toshio Ogata, Masahiro Satio and Yoshiaki Hirayama, “Effect of Welding Structure andδ-ferrite on Fatigue Properties for TIG welded Austenitic Stainless Steels at Cryogenic Temperature”, Cryogenics, Vol. 40, pp. 251-259, 2000.
12.O. Kamiya and K. Kumagai, “Effect of Microstructure on Impact Fracture Behavior of SUS304L SAW Joint at Low Temperture”, Journal of Material Science, Vol. 25, pp. 2017-2024, 1990.
13.A. O. Kluken, C. N. McCowam and T. A. Siewert, “Cryogenic Toughness of Austenite Stainless Steel Weld Metals: Effect of Inclusions”, in W. R.Kanne, Jr., G. W. E. Jophnson ,J. D. Braun and M. R. Louthan,Jr., Microstructural Science Vol.20: Metallographic Characterization of Metals after Welding, Processing and Service, ASM International Press, Ohio, 1992, pp. 45-63.
14.Kunihiko Tsuchiya, Hiroshi Kawamura and George Kalinin, “Re-weldability Tests of Irradiated Austenite Stainless Steel by a TIG Welding Method”, Journal of Nuclear Material, Vol. 283-287, pp. 1210-1214, 2000.
15.T. Suzuki, A. Kohyama, T. Hirose and M. Narui, “Evaluation of Weld Crack Susceptibility for Neutron Irradiated Stainless Steel”, Journal of Nuclear Material, Vol. 271-272, pp. 179-183, 1999.
16.W. R. Kanne, Jr., M. R. Louthan, Jr., D. T. Rankin and M. H. Tosten, “Weld Repair of Irradiated Materials”, Materials Characterization, Vol. 43, pp. 203-214, 1999.
17.M. G. Vassilaros, R. A. Hays and J. P. Gudas, “Investigation of the Ductile Fracrure Properties of 304 Stainless Steel Plate, Welds, and 4-Inchs Pipe”, Proc. 12th Water Reactor Safety Research Information Meeting, Vol. 14, pp. 176-189, 1984.
18.R. L. Sindelar and G. R. Caskey, Jr, “Orientation Dependency of Mechanical Properties of 1950’s Vintage Type 304 Stainless Steel Weldment Components before and after Low Temperature Neutron Irradiation”, Microstructure and mechanical properties of aging materials, TMS, pp. 361-369, 1984.
19.G. Madhusudhan Reddy, T. Mohandas and G. R. N. Tagore, “Weldability Studies of High-Strength Low-alloy steel using Austenitic Fillers”, Journal of Materials Processing Technology, Vol. 49, pp. 213-228, 1995.
20.G. Madhusudhan Reddy and T. Mohandas, “Ballistic Performance of High-Strength Low-Alloy Steel Weldments”, Journal of Materials Processing Technology, Vol. 57, pp. 23-30, 1996.
21.G. Madhusudhan Reddy, T. Mohandas and K. K. Papukutty, “Effect of Welding on the Ballistic Performance of High-Strength Low-Alloy Steel Weldment”, Journal of Materials Processing Technology, Vol. 74, pp. 27-35, 1998.
22.G. Madhusudhan Reddy, T. Mohandas and K. K. Papukutty, “Enhancement of Ballistic Capabilities of Soft Welds through Hardfacing”, Journal of Impact Engineering, Vol. 22, pp. 775-791, 1999.
23.T. Mohandas, G. Madhusudhan Reddy and B. Satish Kumar, “Heat-Affected Zone Softening in High-Strength Low-Alloy Steels”, Journal of Materials Processing Technology, Vol. 88, pp. 284-294, 1999.
24.Y. Bai, B. Dood, “Adiabatic Shear Localization”, Pergamon Press, pp. 1-3, 1992.
25.J. H. Giovanola, “Adiabatic Shear Banding under Pure Shear Loading”, Mechanics of Materials, Vol. 7, pp. 73-87, 1988.
26.S. C. Liao, J. Duffy, “Adiabatic Shear Bands in Ti-6Al-4V Titanium Alloy,” J. Mech. Phys. Solids, Vol. 46, No. 11, pp. 2201-2231, 1998.
27.Woei-Shyan Lee, Chi-Feng Lin, “The Morphologies and Characteristics of Impact-Induced Martensite in 304L Stainless Steel”, Scripta Materialia, Vol. 43, pp. 777-782, 2000.
28.J. Duffy, Y. C. Chi, “On the Measurement of Local Strain and Temperature during the Formation of Adiabatic Shear Bands,” Materials Science and Engineering, Vol. A157, pp. 195-210, 1992.
29.K. A. Hartley, J. Duffy and R. H. Hawley, “Measurement of the Temperature Profile during Shear Band Formation in Steels Deforming at High Strain Rates”, Journal of the Mechanics and Physics of Solids, Vol. 35, No. 3, pp. 283-301, 1987.
30.C. D. Lundin, C. P. Chow, “Hot Cracking Susceptibility of Austenitic Stainless Steel Weld Metals”, Welding Research Council Bulltin, Vol. 289, pp. 80, Nov. 1983.
31.N. Suutala, T. Takalo,T. Moisio, “Austenitic Solidification Mode in Austenitic Stainless Steel Welds”, Metallurgical transaction A, Vol. 10A, No. 8, pp. 1173-1181, 1979.
32.N. Suutala, T. Takalo, T. Moisio, “Single-Phase Ferritic Solidification Mode in Austenitic-Ferritic Stainless Steel Welds”, Metallurgical transaction A, Vol. 10A, No. 8, pp. 1183-1190, 1979.
33.N. Suutala, T. Takalo, T. Moisio, “Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds”, Metallurgical Transaction A, Vol. 11A, No. 8, pp. 717-725, 1980.
34.N. Suutala, “Effect of Manganese and Nitrogen on the Solidification Mode in Austenitic Stainless Steel Welds”, Metallurgical Transaction A, Vol. 13A, No. 12, pp. 2121-2130, 1982.
35.N. Suutala, “Effect of Solidification Conditions on the Solidification Mode in Austenitic Stainless Steels”, Metallurgical transaction A, Vol. 14A, No. 2, pp. 191-197, 1983.
36.J. A. Brooks, J. C. Williams and A. W. Thompson, “STEM Analysis of Primary Austenite Solidified Stainless Steel Welds, Metallurgical Transactions A, Vol. 14A, No.1, pp. 23-31, Jan. 1983.
37.J. A. Brooks, J. C. Williams and A. W. Thompson, “Microstructural Origin of the Skeletal Ferrite Morphology of Austenitic Stainless Steel Welds”, Metallurgical Transactions A, Vol.14A, No. 7, pp. 1271-1281, July 1983.
38.S. Katayama, T. Fujimoto, A. Matsunawa, “Correlation Among Solidification Process, Microstructure, Microsegregation and Solidification Cracking Susceptibility in Stainless Steel Weld Metals”, JWRI Transactions, Vol.14, No. 1, pp. 123-138, 1985.
39.J. C. Lippold, W. F. Savage, “Solidification of Austenitic Stainless Steel Weldments II-The Effect of Alloy Composition on Ferrite Morphology”, Welding Journal, Vol.59, No.2, pp. 48s-58s, Feb. 1980.
40.F. C. Hull, “Effect of Delta Ferrite on the Hot Cracking of Stainless Steel”, Welding Journal, Vol. 46, No. 9, pp. 399s-409s, Feb. 1980.
41.D. L. Olson, “Prediction of Austenitic Weld Metal Microstructure and Properties”, Welding Journal, Vol. 64, No. 10, pp. 281s-295s, 1985.
42.D. J. Kotecki and T. A. Siewert, “WRC-1992 Constitution Diagram for Stainless Steel Weld Metals: a Modification of the WRC-1988 Diagram”, Welding Journal, Vol. 71, No. 5, pp. 171s-178s, 1992.
43.W. T. DeLong, “Ferrite in Austenitic Stainless Steel Weld Metal”, Welding Journal, Vol. 53, No. 7, pp. 273s-286s, July, 1974.
44.K. Easterling, “Introduction to the Physical Metallurgy of Welding”, 2nd edn, pp. 126, 1992, Butterworth Heinemann.
45.H. B. Cary, “Modern Welding Technology”, 4th edn, 1998, New Jersy, Prentice Hall.
46.R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Processes”, Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, pp. 22-26, 1980.
47.U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
48.U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression”, Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
49.M. A. Meyers, “Elastic Waves”, Dynamics Behavior of Materials, pp. 23-65, 1994.
50.J. D. Campbell, “Dynamic Plasticity-Macroscopic and Microscopic Aspects,” Material Science Engineering, Vol. 12, pp. 3-21, 1973.
51.D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys,” Vol. III, ASM, pp. 951, 1970.
52.J. D. Campbell and W. G. Ferguson, “Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Phil. Mag., Vol. 21, pp. 63-82, 1970.
53.A. M. Eleiche and J. D. Campbell, “Strain-Rate Effects During Reverse Torsional Shear”, Experimental Mechanics, Vol. 16, pp. 281-290, 1976.
54.J. Harding and J. Huddart, “The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain”, Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
55.A. Seeger, “Dislocation and Mechanical Properties of Crystals”, The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
56.U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum”, Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
57.H. Conrad, “Thermally Activated Deformation of Metals”, Journal of Metals, Vol. 16, pp. 582-588, 1964.
58.W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates”, Journal of Applied Physics, Vol. 38, No. 4, pp. 1863-1869, 1967.
59.J. D. Campbell and A. R. Dowling, “Behavior of Materials Subjected to Dynamic Incremental Shear Loading”, Journal of Mechanics Physics Solids, Vol. 18, pp. 43-63, 1970.
60.J. Harding, “The Effect of High Strain Rate on Material Properties”, Materials at High Strain Rates, pp. 133-186, 1987.
61.Y. Bai, B. Dood, “Adiabatic Shear Localization,” Pergamon Press, pp. 102, 1992.
62.Y. Bai, B. Dood, “Adiabatic Shear Localization,” Pergamon Press, pp. 108, 1992.
63.V. V. Sokolovsky, Priskl. Mat Mekh., Vol. 12, pp. 261-281, 1948.
64.T. Vinh, M. Afzali and A. Roche, “Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate”, Mechanical Behavior of Materials, Vol. 2, pp. 633-642, 1979.
65.J. Duffy, Proc. “Workshop on Shear Localization”, Brown Univ. Report MRL-E-127, pp. 19-29, 1981.
66.H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth”, International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
67.H. Kobayashi and B. Dodd, “Formation of Adiabatic Shear Bands in Steel and Titanium Twisted at Dynamic Rates”, Journal of Japan Society Technology of Plastic, Vol. 29, pp. 1152-1158, 1988.
68.F. J. Zerilli and R. W., Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
69.R. W. Klopp, R. J. Clifton and T. G. Shawki, “Pressure Shear Impact and Dynamic Viscoplastic Response of Metals”, Mechanics of Materials: an International Journal, Vol. 4, pp. 375-385, 1985.
70.W. Roberts, “Dynamic Changes That Occur During Hot Working and Their Significance Regarding Microstructural Development and Hot Workability, Deformation, Processing and Structure”, American Society for Metals, Metals Park, Ohio, pp. 109-184, 1984.
71.W. Roberts, “Dynamic Changes That Occur During Hot Working and Their Significance Regarding Microstructural Development and Hot Workability, Deformation, Processing and Structure”, American Society for Metals, Metals Park, Ohio, pp. 109-184, 1984.
72.S. Venugopal, S. L. Mannan and Y. V. R. K. Prasad, “Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps”, Metallurgical Transactions A, Vol. 23A, pp. 3093-3103, 1992.
73.J. H. Giovanola, “Adibatic Shear Banding under Pure Shear Loading PartⅡ:Fractographic and Metallographic Observations”, Mechanics of Materials, Vol.7, pp. 73-87, 1988.
74.K. Cho, Y. Chi and J. Duffy, “Microscopic Observations of Adibatic Shear Bands in Three Different Steels”, Metallurgical Transactions A, Vol.21A, pp. 1161-1175, 1990.
75.ASM International/Handbook Committee, “ASM Handbook Vol.19: Fatigue and Fracture”, 10th edn., ASM International Press, Ohio, 1996, pp. 733-756.