簡易檢索 / 詳目顯示

研究生: 曾東立
Tzeng, Dong-Li
論文名稱: 四軸飛行器葉片俯仰角控制機構實體設計
Realization of a Pitch Angle Change Mechanism for Quadcopter Blades
指導教授: 黃才炯
Huang, T.J.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 四軸飛行器螺旋槳葉片效率俯仰角變換機構增加單位升力
外文關鍵詞: quadcopter, propeller blade efficiency, pitch angle change mechanism
相關次數: 點閱:77下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 四軸飛行器為近年來極具發展潛力的新興電子產品,不止在軍事偵察與商用拍攝具有貢獻,在農事、消防救災、包裹輸送、地質偵查與科學研究等方面也具有相當大的潛力。藉由輕巧便利、能夠進行垂直起降、滯空懸停與在不同地形穿越等優點,迅速成為各界新寵。但在巨大開發潛能下,四軸飛行器仍有載重能力不足、續航力較短的缺點,若能藉改善電能應用效率與增大單一馬達提供升力,能使四軸飛行器發展不再受到侷限,具有更廣泛的新興應用潛力。
    螺旋槳效率曲線以不同進動比下的利用效率表示。對固定俯仰角螺旋槳而言,由於製造時角度已固定,其效率曲線只有一條,而可調俯仰角螺旋槳則因俯仰角可調整,能依據不同俯仰角輸入得到一系列效率曲線,增大了螺旋槳效率應用可調性;目前螺旋槳飛機廣泛應用的恆速螺旋槳系統,即利用可調俯仰角螺旋槳原理使引擎燃油效率大為增加。本研究主旨為建立可同時控制多片葉片俯仰角的四軸飛行器葉片俯仰角變換控制機構,增加單一馬達能提供的升力,同時藉控制俯仰角變換使四軸飛行器電能應用效率更好,增加滯空飛行時間。
    本研究設計並製造的俯仰角變換控制機構可依加裝的葉片數目進行快速調整,共測試分別裝配2、3與4片螺旋槳葉片的機構,驗證其在轉速6000rpm下的使用安全性,並找出造成機構使用缺陷的可能原因分析。同時發現在靜態流場下,葉片俯仰角變換精確度誤差的發生原因有1.在不同轉速旋轉,2.葉片俯仰角變換方向(葉片受力大小不同),3.裝配不同數目葉片等三變數;而機構採用PLA材料印製,質輕不失強度,對機體負擔小。此葉片俯仰角變換控制機構經實驗證明可在螺旋槳高速動態轉動下確實變換多片葉片的俯仰角,達成攻角變換與提升單位馬達提供升力的目的。

    Quadcopter is an emerging electronic product with great potential in recent years. It not only contributes to military reconnaissance and commercial application, but also can play an important role in agriculture, remote area parcel transportation, geological exploration and scientific research. However, under its huge potential, the quadcopter still has the disadvantages of low load capacity and low endurance. Therefore, if power utilization efficiency can be improved and the lift provided by a single motor can be increased, the future of quadcopter can be no longer limited.
    The propeller efficiency theory shows that the propeller efficiency curve can be expressed as a function of advance ratio and blade angle. For fixed-pitch propellers, since the pitch angle is fixed at manufacturing process, there is only one efficiency curve. But variable pitch propellers can have several propeller efficiency curves according to different pitch angle inputs, which increases the adjustability of the propeller efficiency application.
    Constant-speed propeller system which widely used in propeller aircraft is based on the variable pitch propellers to greatly increase the fuel efficiency of the engine. The main purpose of this study is establishing a pitch angle control mechanism for quadcopter to increase the adjustable possibilities of propellers.
    The pitch angle control mechanism designed in this study can be quickly adjusted according to the number of installed blades, and it can control several blades’ pitch angle at the same time. We tested the mechanism of assembling 2, 3 and 4 propeller blades respectively, verifying the safety of the use below 6000 rpm, and have found out the possible causes of the defects in the mechanism. The tested experiment proved that the pitch angle control mechanism is suitable for medium size quadcopter, but still need some control algorithm design to have the same benefits in Constant-speed propeller system which widely used in propeller aircraft.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 符號說明 XVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 7 1.4論文架構 7 第二章 研究背景 10 2.1四軸飛行器飛行原理 10 2.1.1 螺旋槳飛機飛行原理 10 2-1.2 四軸飛行器動態飛行控制概論 11 2.2螺旋槳參數與種類介紹 14 2.3螺旋槳葉片數學理論 19 2.3.1動量理論 19 2.3.2葉片元素理論 21 2.3.3螺旋槳效率理論 25 2.4直流無刷馬達組成與工作原理 27 2.5微型伺服馬達組成與工作原理 29 2.6 PWM脈衝寬度調變訊號 30 2.7光電感測器計數原理 31 第三章 俯仰角變換控制機構設計 32 3.1設計目標及理念 33 3.2 機構設計 34 3.2.1俯仰角改變機構設計 34 3.2.2控制俯仰連桿說明 38 3.2.3整體俯仰角變換控制機構做動說明 40 3.3機構製造實體化與裝配 42 3.3.1機構製造與實體化 42 3.3.2機構裝配 46 3.4驗證實驗器材介紹 49 3.5俯仰角改變控制機構驗證方法 53 3.5.1 機構安全試驗與應力集中模擬計算 54 3.5.2 俯仰角變換控制機構變更範圍實驗 54 3.5.3定轉速下,俯仰角變更精確度實驗 54 第四章機構測試驗證與討論 56 4.1 實驗假設 56 4.2 實驗環境架設 57 4.2.1硬體組成 57 4.2.2實驗電路組成與程式設計 58 4.3 感測器校正與準確度驗證 60 4.3.1實驗取樣頻率設定 60 4.3.2轉速感測器校正 60 4.3.3 角度變換精確度校正 62 4.4使用安全測試實驗與短連桿應力分析計算 63 4.4.1拉伸負載分析 65 4.4.2彎曲負載分析 68 4.4.3小結 71 4.5定轉速下,控制機構作動範圍實驗 72 4.6定轉速下,俯仰角變更誤差實驗結果與討論 76 4.6.1實驗記錄 78 4.6.2 圖表與結果討論 84 4.7小結 90 第五章結論與建議 91 5.1結論 91 5.2未來發展與建議 92 參考文獻 94 附錄A(實驗控制程式) 97 附錄B(D-FORCE V3 3D列印機規格) 103 附錄C(俯仰角變換控制機構工程圖) 104

    Bouadi, Cunha, Drouin, Antonio, and Camino "Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking." IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 2011.

    Bresciani, T., "Modelling, Identification and Control of a Quadrotor Helicopter",2008.

    Cutler,M.,Ure,N.K., Michini,B.and How,J.P."Comparison of Fixed and Variable Pitch Actuators for Agile Quadrotors. " AIAA Guidance, Navigation,and Control Conference, 2011.

    Coollins."What’s the difference between an EC motor and a BLDC motor? "Retrieved from https://www.motioncontroltips.com/whats-the-difference- between-an-ec-motor-and-a-bldc-motor/

    Dikmen,I.C.,Arisoy,A.and Temeltas,H."Attitude control of a quadrotor."4th International Conference on Recent Advances in Space Technologies,2009.

    Driessens, and Pounds,"Towards a more efficient quadrotor configuration."IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013.

    Electronics hub (2015,October 28)," Servo Motor – Types and Working Principle".Retrieved from https://www.electronicshub.org/servo-motors/

    eFatigue.(n.d.)."Stress Concentration Factor Finder." Retrieved from https://www.efatigue.com/constantamplitude/stressconcentration/#a.

    Federal Aviation Administration.," Airplane Flying Handbook 2016: FAA-H8083-3B",Aviation Supplies & Academics , 2016.

    Gupte,S.,Mohandas,P.I.T.and Conrad,J.M."A survey of quadrotor Unmanned Aerial Vehicles. "Proceedings of IEEE Southeastcon, 2012.

    Kasnakoğlu,C."Investigation of multi-input multi-output robust control methods to handle parametric uncertainties in autopilot design," PloS one, vol.11, no.10,p.e0165017, 2016.

    Ryll, Bulthoff and Giordano,"Modeling and Control of a Quadrotor UAV with Tilting Propellers, "IEEE International Conference on Robotics and Automation, pp.4606-4613, May. 2012.

    Mellinger,D.and Kumar,V. "Minimum Snap Trajectory Generation and Control for Quadrotors. " IEEE International Conference on Robotics and Automation, pp. 2520-2525, 2011.

    McCormick and Barnes,"Aerodynamics of V/STOL Flight."Dover Publications,1998.

    Norouzi Ghazbi,S., Aghli,Y.,Alimohammadi, M.,and Akbari,A.A. "Quadrotors Unmanned Aerial Vehicles:a Review." International Journal on Smart Sensing & Intelligent Systems,vol.9, pp.309-333,2016.

    Pounds,P., Mahony,R.,Gresham,J.,Corke,P.and Roberts,J. M. "Towards dynamically-favourable quad-rotor aerial robots." Proceedings of the 2004 Australasian Conference on Robotics & Automation, 2004.

    Prouty,R.W. "Helicopter Performance, Stablilty, and Control.",Krieger Pub Co, 1995.

    Rogers, D. F. "Propeller Efficiency Rule of Thumb.", American Bonanza Society, 2010.

    Slavik,S."Preliminary determination of propeller aerodynamic characteristics for small aeroplanes," Journal of Advanced Engineering, Vol. 44, pp. 103-108., 2004.

    Salt." Understanding Cyclic RC Helicopter Control ", form https://www.rchelicopterfun.com/cyclic-rc-helicopter-control.html, 2019.

    Srinivas and Auld. "Aerodynamics for Students" from http://www.aerodynamics4students.com/propulsion/blade-element-rotor-theory.php

    Shastry, Kothari,and Abhishek. "Generalized Flight Dynamic Modelof Quadrotor Using Hybrid BladeElement Momentum Theory.", Journal of Aircraft Vol.55,No.5,September–October,2018.

    Sheng and Sun. " Control and Optimization of a Variable-PitchQuadrotor with Minimum Power Consumption.", 2016.

    Theys, B., Dimitriadis, G., Hendrick, P.and Schutter, J. D. "Influence of propeller configuration on propulsion system efficiency of multi-rotor Unmanned Aerial Vehicles." International Conference on Unmanned Aircraft Systems, 2016.

    W.D.Pilkey,and D.F.Pilkey, "Peterson's Stress Concentration Factors."John Wiley & Sons, 2008.

    Zhang,T., Kang, Y., Achtelik, M., Kiihnlenz, K., and Buss, M., "Autonomous Hovering of a Vision/IMU Guided Quadrotor, " IEEE International Conference on Mechatronics and Automation, pp. 2870-2875, Aug. 2009.

    青年農業平台(民108年6月4日),應用無人機防治荔枝椿象 農民新利器,取自https://academy.coa.gov.tw/YF/news.php?id=news_1560243719

    黃建庭,輕鬆玩Arduino程式設計與感測器入門,碁峰資訊,2018。

    郭兆書,飛行原理概論(第二版),三民書局,2015。

    鄒應嶼,直流電動機的工作原理與特性,交通大學,1996。

    廖大為,四軸飛行器葉片最佳化之平台設計,成功大學,台南市,台灣,2018。

    賴舜平,應用測試方法設計葉片改善,成功大學,台南市,台灣,2016。

    下載圖示 校內:2022-12-31公開
    校外:2024-12-31公開
    QR CODE