簡易檢索 / 詳目顯示

研究生: 洪啟昌
Hung, Chi-Chang
論文名稱: 聚(磺酸苯乙烯)、聚(乙烯醇)與金奈米粒子對聚苯胺電化學活性之研究
Study on the Electroactivity of Polyaniline incorporating Poly(styrene sulfonic acid), Poly(vinyl alcohol), and Gold Nanoparticles
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 聚苯胺聚(磺酸苯乙烯)聚(乙烯醇)金奈米粒子
外文關鍵詞: Polyaniline, Poly(styrene sulfonic acid), Poly(vinyl alcohol), Gold Nanoparticles
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討當混入不同材料與聚苯胺形成複合物時,聚苯胺的電化學活性是否會因而產生變化。並將材料的種類分三部份舉例來討論,第一部份:用高分子酸(如:聚(磺酸苯乙烯))與聚苯胺形成複合物、第二部份:用非酸型高分子(如:聚(乙烯醇))與聚苯胺形成複合物;第三部份:用金屬奈米粒子(如:金奈米粒子)與聚苯胺形成複合物。本研究發現,當混入不同材料與聚苯胺形成複合物時,將對聚苯胺的電化學活性造成不同的影響。分述如下:
    (1) 以聚(磺酸苯乙烯)為複合材
      此研究利用聚(磺酸苯乙烯)摻雜去質子化的聚苯胺來合成聚苯胺-聚(磺酸苯乙烯)複合材料。發現此摻雜程序遵守費克質傳定律,於80oC時的聚(磺酸苯乙烯)在聚苯胺高分子膜中的質傳表觀係數為(0.37×10-16 cm2/s),使得能夠快速地於20分鐘內製備此複合物;由於此值比在25oC的質傳係數(0.28×10-18 cm2/s)大上132倍,導致於25oC的電化學應用過程中,聚(磺酸苯乙烯)仍能穩定地存在於聚苯胺高分子膜中。其提供一個酸性的環境,讓聚苯胺能在中性液裡應用時,依然能夠再質子化,並保持其電化學活性。且於再質子化時,又能作為陽離子自由基的穩定劑,使聚苯胺能有更快的電子傳送速率。
    (2) 以聚(乙烯醇)為複合材
      此研究利用聚苯胺奈米纖維與聚(乙烯醇)混摻來合成聚苯胺-聚(乙烯醇)奈米複合材料。發現聚苯胺奈米纖維混以25wt%聚(乙烯醇)後,所形成的複合材料具有多孔隙結構與高電化學活性。更發現聚苯胺奈米纖維與聚(乙烯醇)之間的氫鍵作用力,可保護聚苯胺奈米纖維上的雙偏質子,使其免於被水分子所攻擊而產生水解反應,可提升聚苯胺電化學活性的穩定度。此外,此研究亦發現,對此奈米複合材料進行熱處理後,聚苯胺主鏈上的苯環將會與聚(乙烯醇)的醇基進行反應生成酯鍵結,造成聚苯胺的電化學活性與其穩定性大幅下降。
    (3) 以金奈米粒子為複合材
      此研究利用聚苯胺奈米纖維還原四氯金酸來合成聚苯胺-金的奈米複合材料。發現四氯金離子傾向與聚苯胺上被質子化的亞胺基進行錯合,並逐漸地電子轉移;在聚苯胺奈米纖維表面上,均勻地還原出超微小的奈米金粒子(2nm)。於此此研究亦提出其可能的形成機構。此外,此研究發現聚苯胺奈米纖維與金奈米粒子間的作用力,會提升其各別的電化學活性與電催化活性。將此奈米複合材料應用在過氧化氫的感測上時,其製成之感應器可擁有高敏感度(8.34 mA/M)與快速應答(3秒)的特性。

    This study investigated the effect of the interaction between polyaniline (PANI) and its composite materials on electroactivity of PANI. The composite materials are classified into polyacids (e.g. poly(styrene sulfonic acid), PSS), non-polyacids (e.g. poly(vinyl alcohol), PVA), and metals (e.g. gold nanoparticles, AuNPs). We found that different kinds of interaction between the materials really influenced the electroactivity of PANI.
    (1) incorporating PSS with PANI as the composite material
    PANI-PSS was prepared by redoping de-protonated PANI with PSS. Through the kinetic study, we found that the apparent diffusion coefficient (D) value of PSS in PANI film was 0.37 × 10-16 cm2/s at 80 °C and the redoping process obeys the Fickian diffusion kinetics, hence, the redoping process could be fast finished in 1200 seconds. The reason of the good electro-stability of PANI-PSS under a disgusting electrochemical process can be attributed to the low D value of PSS (0.28 × 10-18 cm2/s) in PANI film that prevented the release of PSS form PANI film. PSS given PANI an acidic environmental for re-protonated its nitrogen sites under electrochemical sweeping in neutral solution. Furthermore, the PSS act as a stabilizer for re-protonated nitrogen sites on PANI, thus PANI-PSS with a faster charge transfer rate and higher electroactivity than PANI.
    (2) incorporating PVA with PANI as the composite material
    PANI-PVA nanocomposite was prepared by blending Polyaniline nanofibers (PANFs) with aqueous solution of polyvinyl alcohol (PVA). We found that blended 25 wt% PVA with PANF then casting at 105 oC can obtain a high-electroactive and porous nanocomposite (PANF-PVA25). The presence of the hydrogen bonding interaction between PANF and PVA improves the electroactive stability of PANF-PVA25, due to it prevented the attack of H2O on the protonated imine sites. However, the electroactivity and electroactive stability decreased after thermal treatment of PANF-PVA25 at 200 oC for 15 min due to that causing the ether linkage between PANF and PVA polymer chain.
    (3) incorporating AuNPs with PANI as the composite material
    PANI-AuNPs nanocomposite was prepared by using PANFs for reducing chloroaurate anions (AuCl4-). We found that ultra-fine and uniform AuNPs (2 nm) were selectively reduced on PANFs. The water dispersible PANFs, which acted as the reductant, provided a high surface area to absorb (form complexes) and react with AuCl4-. A possible mechanism for the formation of the AuNPs-PANF nanocomposite was proposed. The strong interaction would accelerate the redox reactions for both PANFs and AuNPs, and enhanced the electroactivity of PANF and the electrocatalytic activity of AuNPs. The electrode of AuNPs-PANFs exhibited a fast response time (less than 3 s) and a high sensitivity (8.34 mA M-1) for H2O2 sensing.

    中文摘要……………………………………………………………………I 英文摘要…………………………………………………………………..III 誌謝………………………………………………………V 目 錄……………………………………………………………………….VI 圖目錄……………………………………………………………………..X 符號……………………………………………………………………..XIII 第一章 緒論…………………………………………………...................1 1-1 導電性高分子………………………..………………………………...1 1-1-1 導電性高分子之發展緣起……………………………………….1 1-1-2 導電性高分子之分類…………………………………………....3 1-1-3 導電性高分子之導電機制……………………………………….5 1-2 聚苯胺……………..………………………………...…………………..7 1-2-1 聚苯胺之聚合機制……….…………………………………….8 1-2-2 聚苯胺之結構……………………………….…………………..9 1-2-3 聚苯胺之摻雜………………………………………….………..11 1-2-4 聚苯胺之電化學行為…………………………………………….12 1-2-5 聚苯胺之電變色行為…………………………………………..13 1-2-6 聚苯胺之合成……………………………………………………14 1-2-6-1 電化學聚合………………………………………………14 1-2-6-2 化學聚合………………………………………………….16 1-2-7 聚苯胺之衍生物……………………………………………….19 1-2-7-1 氮上取代聚苯胺衍生物…………………………………20 1-2-7-2 環上取代聚苯胺衍生物…………………………………20 1-3 聚苯胺之複合物……………………………...………………………22 1-3-1 聚苯胺/高分子複合物…………………………………………22 1-3-2 聚苯胺/奈米金屬複合物………………………………………26 1-4 研究動機……………………………...………………………………29 第二章 製備聚苯胺-聚(磺酸苯乙烯)及其電化學活性之研究…………39 2-1 前言……………………………...…………………………………...39 2-2 實驗部份……………………………...…………………………….40 2-2-1 藥品…………………………………………………………..40 2-2-2 製備苯胺-聚(磺酸苯乙烯) ………………………………….41 2-2-3 分析儀器…………………………………………………….41 2-3 結果與討論……………………………...…………………………43 2-3-1再摻雜程序之質傳動力分析與探討………………………..43 2-3-2表面分析與探討…………………………………………….45 2-3-3縱度元素分布與穩定性探討………………………………..46 2-3-4電子傳送阻抗分析與探討…………………………………..47 2-3-5電化學活性分析與探討……………………………………..48 2-4 結論……………………………...…………………………………50 第三章 製備聚苯胺奈米纖維-聚(乙烯醇)複合物及其電化學活性之研究……………………………...…………………………………………….58 3-1 前言……………………………...……………………………………..58 3-2 實驗部份……………………………...………………………………..59 3-2-1藥品與裝置…………………………………………………..59 3-2-2 製備聚苯胺奈米纖維…………………………………………..60 3-2-3 製備聚苯胺奈米纖維-聚(乙烯醇)複合物………………………60 3-2-4分析儀器…………………………………………………………61 3-3 結果與討論……………………………...…………………..………..62 3-3-1 懸浮性之評估與探討……………………………………………62 3-3-2 表面型態及導電度之分析與探討……………………………….63 3-3-3 熱重分析與探討………………………………………………64 3-3-4 電化學活性及其穩定性分析與探討…………………………….65 3-3-5 熱處理前後之化學結構分析與探討…………………………….67 3-4 結論……………………………...…………………………………….68 第四章 製備聚苯胺奈米纖維-奈米金粒子複合物及其電化學活性之研究與應用…………………………...………………………………………….76 4-1 前言……………………………...…………………………………….76 4-2 實驗部份……………………………...………………………………77 4-2-1 藥品與裝置………………………………………………………77 4-2-2 製備聚苯胺奈米纖維…………………………………………….77 4-2-3 製備聚苯胺奈米纖維-奈米金粒子複合物………………………78 4-2-4分析儀器…………………………………………………………...78 4-3 結果與討論……………………………...……………………………..80 4-3-1 製備過程分析與探討…………………………………………..80 4-3-2 聚苯胺與金粒子結構分析與探討………………………………81 4-3-3 形成機構探討……………………………………………………82 4-3-4 電化學活性分析與探討…………………………………………82 4-3-5 過氧化氫偵測與探討……………………………………………83 4-4 結論……………………………...……………………………………84 第五章 總結與展望…………………………………...……………………93 參考文獻…………………………………………………………………..95 著作……………………………………………………………………….105 期刊論文…………………………………….……………………………105 研討會論文………………………………………………………………..105 自述……………………………………………………………………….106

    1. S. Lefrant, L. S. Lichtman, M. Temkin, D. C. Fichten, D. C. Miller, G. E. Whitwell and J. M. Burlich, Solid State Commun., 29, 191 (1979).
    2. H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001).
    3. A. G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).
    4. A. J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001).
    5. C.-H. Yang, L.-R Huang, T.-C. Wen, S.-L. Chung and T.-L. Wang, J. Phys. Chem., 111, 26 (2007)..
    6. T.-C. Wen, S.-S. Luo and C.-H. Yang, Polymer, 41, 18 (2000).
    7. T. P. McAndrew, TRIP., 5, 7 (1997).
    8. R. N. McDonald and T. W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
    9. G. A. Lapitskii, S. M. Makin and A. A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
    10. W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle and D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
    11. G. Kossmehl and B. Bunsenges, Phys. Chem., 83, 417 (1979).
    12. L. W. Shacklette, H. Eckhardt, R. R. Chance and R. H. Banghman, J. Chem. Soc. Chem. Commun., 854 (1980).
    13. P. Pfluger and O. B. Street, J. Chem. Phys., 80, 544 (1984).
    14. A. F. Diaz, J. Chem. Soc. Chem. Commun., 635 (1979).
    15. A. F. Diaz, K. K. Kanazawa, J. I. Castillo and J. A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
    16. E. M. Genies, G. Bidan and A. F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
    17. R. Jansson, H. Arwin, R. Bjorklund and I. Lundstrom, Thin Solid Films, 125, 205 (1980).
    18. A. F. Diaz, A. Matninez, K. K. Kanazawa and M. Salmon, J. Electroanal. Chem., 130, 181 (1980).
    19. G. Tourillon and F. Garnier, J. Electroanal Chem., 135, 173 (1982).
    20. G. Tourillon and F. Gamier, J. Electroanal. Soc., 130, 2042 (1983).
    21. R. J. Waltman, J. Bargon and A. F. Diaz, J. Phys. Chem., 87, 1459 (1983).
    22. J. J. Ohsawa, K. Kaneto and K. Yoshino, Jap. J. App. Phys., 23, L663 (1984).
    23. G. B. Street, T. C. Clarke, R. H. Geiss, V. Y. Lee, A. Nazzal, P. Pflunger and J. C. Scott, J. Phys. (Paris), C3, 599 (1983).
    24. K. K. Kanazawa, A. F. Diaz, M. T. Krounbi and G. B. Street, Synth. Met., 4, 119 (1981).
    25. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111 (1980).
    26. D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962).
    27. J. Langer, Solid State Commun., 26, 839 (1978).
    28. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu and N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 121, 173 (1985).
    29. J. Bacon and R. N. Adams, J. Am. Chem. Soc., 90, 6596 (1968).
    30. R. A. Cox and E. Buncel, in The Chemistry of Hydrazo, Azo and Azoxy Groups, S. Patel Ed., Wiley, New York, Part 2, P775 (1975).
    31. E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 199 (1987).
    32. M. Lapkowski and E. M. Genies, J. Electroanal. Chem., 279, 157 (1990).
    33. A. G. MacDiarmid, J. C. Chiang, W. Huang, B. D. Humphery and N. L. D. Somasiri, Mol. Cryst. Liq. Cryst., 125, 309 (1985).
    34. Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima and T. Kawahgoe, Macromolecules, 21, 1297 (1988).
    35. H. Yoon, B. S. Jung and H. Lee, Synth. Met., 41, 699 (1991).
    36. W. W. Focke, C. E. Wnek and Y. Wei, J. Phys. Chem. 91, 5813 (1987).
    37. T. Kobayashi, H. Yoneyama and A. Tamura, J. Electroanal. Chem., 161,281 (1984).
    38. L. C. Rohert and S. C. Yang, Synth. Met., 29, E337 (1989).
    39. T. Ohsawa, T. Kabata and O. Kimura, Synth. Met., 29, E230 (1989).
    40. W.-S. Huang and A. G. MacDiarmid, Polymer, 34, 1833 (1993).
    41. A. Kitani, K. Sasaki and J. Yano, J. Electroanal. Chem. 209, 227 (1986).
    42. U. Konig and J. W. Schultze, J. Electroanal. Chem. 242, 243 (1988).
    43. Y. Wei, Y. Sun and X. Tang, J. Phys. Chem. 93, 4878 (1989).
    44. K. Sasaki, M. Kaya, J. Yano, A. Kitani and A. Kunai, J. Electroanal. Chem., 215, 401 (1986).
    45. Y. Wei, X. Tang, Y. Sun and W. W. Focke, J. Polym. Sci. Chem. Edn., 27, 2385 (1989).
    46. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem., 177, 281 (1984).
    47. M. Kancko, H. Nagamura and T. Shimora, Makromol. Chem., Rapid Commun., 8, 179 (1987).
    48. Y. Cao, A. Andreatta, A. J. Heeger and P. Smith, Polymer, 30, 2305 (1989).
    49. A.G. MacDiarmid, S.K. Manohar, J.C. Masters, Y. Sun, H. Weis and A. J. Epstein, Synth. Met., 41-43, 621 (1991).
    50. K. Tzou and R. V. Gregory, Synth. Met.,47, 267 (1992).
    51. N. Gospodinova, L. Terlemezyan, P. Mokreva and K. Kossev, Polymer, 34, 2434 (1993)
    52. N. Gospodinova, P. Mokreva and L. Terlemezyan, Polymer, 36, 3585 (1995).
    53. B.-J. Kim, S.-G. Oh, M.-G. Han and S.-S. Im, Synth. Met., 122, 297 (2001).
    54. M. G. Han, S. K. Cho, S. G. Oh and S. S. Im, Synth. Met., 126, 53 (2002).
    55. L. Zhang and M. Wan, Nanotechnology, 13, 750 (2002).
    56. J. Huang, S. Virji, B. H.Weiller and R. B. Kaner, J. Am. Chem. Soc., 125, 314 (2003).
    57. J. Huang and R. B. Kaner, J. Am. Chem. Soc., 126, 851 (2004).
    58. Y. F. Fong and J. B. Svhlenoff, Polymers, 36, 639 (1995).
    59. A. G. MacDiarmid and A. J. Heeger, Synth. Met., 1, 101 (1979).
    60. W.-Y. Zheng, K. Levon, J. Laakso and J. E. Osterholm, Marcomolecules, 27, 7754 (1994).
    61. J. W. Chevalier, J. Y. Bergeron and L. H. Dao, Macromolecules, 25, 3325 (1992).
    62. S. A. Chen and G. W. Hwang, J. Am. Chem. Soc., 117, 10055 (1995).
    63. K. I. Nakayama, S. Y. Gujimoto and M. Yokoyama, Appl. Phys. Lett., 82, 4584 (2003).
    64. M. Leclerc, J. Guay and L.H. Dao, Macromolecules, 22, 649 (1989).
    65. A. A. Athawale, B. A. Deore and M. V. Kulkami, Mater. Chem. Phys., 60, 262 (1999).
    66. Y. Wei, W. W. Focke, G. E. Wuck, A. R. and A. G. MacDiarmid, J. Phys. Chem., 93, 495 (1989).
    67. L. X. Wang, X. B. Jing and F. S. Wang, Synth. Met., 41, 745 (1991).
    68. F. A. Viva, E. M. Andrade, F. V. Molina and M. Florit, J. Electroanal. Chem., 471, 180 (1999).
    69. D. Goncalves, B. Matrenko and L. O. S. Bulhães, J. Electroanal. Chem., 415, 107 (1996).
    70. G. Zotti, N. Cornisso, C. D'Aprano and M. Leclerc Adv. Mater., 4, 749 (1992).
    71. G. Pistoia and R. Rosati, Electrochim. Acta, 3, 333 (1994).
    72. M. Mazur and P. Krysiński, Electrochim. Acta, 46, 3963 (2001).
    73. A. G., MacDiarmid and A. J. Epstein, Synth. Met., 65, 103 (1994).
    74. H. S. O. Chan, S. C. Ng, W. S. Sim, K. L. Tan and B. T. G. Tan, Macromolecules, 25, 6029 (1992).
    75. J. Y. Lee and C. Q. Cui, J. Electroanal. Chem., 403, 109 (1996).
    76. A. A. Karyakin, A. K. Strakhova and A. K. Yatsimirsky, J. Electroanal. Chem., 371, 259 (1994).
    77. A. A. Karyakin, I. A. Maltsev and L. V. Lukachova, J. Electroanal. Chem., 402, 217 (1996).
    78. S. A. Chen and G. W. Hwang, J. Am. Chem. Soc., 116, 7939 (1994).
    79. Y. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein and A. G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
    80. H. K. Lin and S. A. Chen, Macromolecules, 33, 8117 (2000).
    81. S. A. Chen and W. G. Fang, Macromolecules, 24, 1242 (1991).
    82. S.-A. Chen and G.-W. Hwang, Polymer, 38, 3333 (1997).
    83. Z. Zhang and M. Wan, Synth. Met. 128, 83 (2002).
    84. A. Mirmohseni and G. G. Wallace, Polymer, 44, 3523 (2003).
    85. S. Li, Y. Cao and Z. Xue, Synth. Met., 20, 141 (1987).
    86. B. D. Malhotra, S. Ghosh and R. Chandra, J. App. Polym. Sci., 40, 1049 (1990).
    87. J. H. Hwang and S. C. Yang, Synth. Met., 29, E271 (1989).
    88. H. Ding and S.-M. Park, J. Electrochem. Soc., 150, E33 (2003).
    89. A. R. Hopkins, D. D. Sawall, R. M. Villahermosa and R. A. Lipeles, Thin Solid Films, 469, 304 (2004).
    90. X. M. Feng, C. J. Mao, G. Yang, W. H. Hou and Y. J. Zhu, Langmuir, 22, 4384 (2006).
    91. J. Jang, J. Ha and J. Cho, Adv. Mater., 19, 1772 (2007).
    92. T.-K. Chang, C.-C. Chang and T.-C. Wen, J. Power Sources, 185, 603 (2008).
    93. J. M. Kinyanjui and D. W. Hatchett, Chem. Mater., 16, 3390 (2004).
    94. Y. Wang, Z. Liu, B. Han, Z. Sun, Y. Huang and G. Yang, Langmuir, 21, 833 (2005).
    95. 陳禹翔,"同步合成複合奈米金-聚苯胺奈米纖維應用於過氧化氫感測",國立成功大學化工系碩士論文 (2008).
    96. X. Feng, G. Yang, Q. Xu, W. Hou and J.-J. Zhu, Macromolecular Rapid Communications, 27, 31 (2006).
    97. T. K. Sarma, D. Chowdhury, A. Paul and A. Chattopadhyay, Chem. Commun., 1048 (2002).
    98. D. W. Hatchett, M. Josowicz and J. Janata, Chem. Mater., 11, 2989 (1999).
    99. J. A. Smith, M. Josowicz and J. Janata, J. Electrochem. Soc., 150, E384 (2003).
    100. J. Wang, K. G. Neoh and E. T. Kang, J. Colloid Interface Sci., 239, 78 (2001).
    101. H. Zhou, H. Chen, S. Luo, J. chen, W. Wei and Y. Kuang, Biosens. Bioelectron., 20, 1305 (2005).
    102. Y. Xian, Y. Hu, F. Liu, Y. Xian, H. Wang and L. Jin, Biosens. Bioelectron., 21, 1996 (2006).
    103. S. A. Chen, 物理雙月刊P.312, April, 2001.
    104. K. G. Neoh, M. Y. Pun, E. T. Kang and K. L. Tan, Synth. Met., 73, 209 (1995).
    105. C. R. Diaz, E. S. Matveeva and V. P. Parkhutil, J. Non-Cryst. Solids, 180, 260 (1995).
    106. A. J. Epstein and A. G. MacDiarmid, Makromol. Chem. Macromol. Symp., 51, 217 (1991).
    107. M. Wan, J. Polym. Sci. A, 30, 543 (1992).
    108. T. C. Wen, L. M. Huang and A. Gopalan, Electrochim. Acta, 46, 2463 (2001).
    109. M. A. Mohamad and A. Z. Eman, Sci. Technol. Adv. Mater., 9, 015007 (2008).
    110. G. S. Zotti, G. Schiavon, F. Louwet, L. Groenendaal, X. Crispin, W. Osikowicz, W. Salaneck and M. Fahlman, Macromolecules, 36, 3337 (2003).
    111. Y. K. Zhou, B. L. He, W. J. Zhou and H. L. Li, J. Electrochem. Soc., 151, A1052 (2004).
    112. P.-S. Li and H. Teng, J. Chin. Inst. Chem. Engrs, 38, 267 (2007).
    113. C. P. Tien and H. Teng, J. Taiwan Inst. Chem. Engrs., 40, 452 (2009).
    114. M. A. Vorotyntsev. J. P. Badiali and G. Inzelt, J. Electroanal. Chem., 472, 7 (1999).
    115. C. Sanchís, H. J. Salavagione, J. Arias-Pardilla and E. Morallón, Electrochim. Acta, 52, 2978 (2007).
    116. L. Zhang and S. Dong, J. Electroanal. Chem., 568, 189 (2004).
    117. E. S. David and P. Su-Moon, J. Electrochem. Soc., 136, 427 (1989).
    118. P. Ghosh, S. K. Siddhanta, S. R. Haque and A. Chakrabarti, Synth. Met., 123, 83 (2001).
    119. F. L. Marten, in: J. I. Kroschwitz (Ed.) Encyclopedia of Polymer Science Engineering, vol. 17, Wiley, New York, 1989, P.169.
    120. P. Ghosh, S. K. Siddhanta and A. Chakrabarti, Eur. Polym. J. 35, 699 (1999).
    121. Y.B. Shim, M.S. Won and S.M. Park, J. Electrochem. Soc., 137, 538 (1990).
    122. M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).
    123. H. Xia and Q. Wang, Chem. Mater., 14, 23 (2004).
    124. W. Li, Q. X. Jia and H.-L. Wang, Polymer, 47, 23 (2006).
    125. T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa and M. Haruta, J. Colloid Interface Sci., 323, 105 (2008).
    126. I. L. De Mattos, L. Gorton and T. Ruzgas, Biosens. Bioelectron., 18, 193 (2003).
    127. E. Ferapontova and L. Gorton, Bioelectrochemistry, 55, 83 (2002).
    128. W. Yan, X. Feng, X. Chen, W. Hou and J.-J. Zhu, Biosens. Bioelectron. 23, 925 (2008).
    129. A. J. Bard and L. R. Faulkner, Wiley, New York, 1980.

    下載圖示 校內:立即公開
    校外:2012-10-11公開
    QR CODE