簡易檢索 / 詳目顯示

研究生: 陳蓉萱
Chen, Jung-Hsuan
論文名稱: X-微光束及微觀結構分析兩種生物高分子共結晶調控之週期性柵狀結構
Microbeam X-ray and Microscopy Analyses on Periodically Grating Structures Tailored by Co-crystallization of Two Biopolymers
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 聚羥基丁酸酯共聚經基戊酸酯週期性環帶狀球晶生物可分解高分子生長速率晶板排列
外文關鍵詞: PHBV, biodegradable polymer, growth rate, periodically ring-banded spherulites, lamellar assembly, microbeam X-ray
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用偏光顯微鏡(polarized optical microscopy, POM)、微分掃描熱卡計(differential scanning calorimeter, DSC)、電子顯微鏡(scanning electron microscopy, SEM)、小角度X光散射儀(microbeam small-angle X-ray scattering, SAXS)及廣角度X光繞射儀(microbeam wide-angle X-ray diffraction, WAXD)探討生物可分解高分子聚羥基丁酸酯共聚羥基戊酸酯(poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid), PHBV)和聚對二氧環己酮(poly(p-dioxanone), PPDO)兩成份摻合系統,以熔融結晶之方式製備樣品,觀察其結晶動力、球晶型態、上表面及內部晶板排列的構造。
    首先改變組成比例以POM進行生長速率及球晶形貌的初步觀察,在球晶成長速率方面,相較於neat PHBV,加入PPDO後的混摻系統其球晶成長速率隨著PPDO含量增加而明顯下降,且產生最大球晶成長速率的溫度隨之往低溫移動。選擇75/25的組成比例做進一步的分析,發現隨著熔融溫度(Tmax)及結晶溫度(Tc)的上升,環帶寬度(band spacing)及整體環帶規則度(regularity)會有增加的趨勢,並嘗試從動力學的角度解釋為何在不同熱條件下,會造成其形貌規則度的變化,但結果顯示無特殊的對應關係,唯一的差別則是在於球核出現的時間點。以環帶最整齊且生長速率最快的Tc = 80 oC之樣品進行SEM分析,觀察球晶上表面與內部結構的晶板排列。表面觀察到晶板具有浮凸特徵以及與spiral方向一致的偏折行為,內部晶板同時存在與基材平行及垂直的兩種排列;此外也闡明了crack與domain,兩者不同的形成機制、起因及位置。接著利用microbeam SAXS及WAXD輔以證明在SEM觀察之晶板排列,推測出PHBV環帶狀球晶之ridge及valley分別對應內部垂直與水平的晶板。透過本研究的結果,可了解PHBV球晶是由兩種不同排列方向及不連續的晶板週期性重複而形成,而非傳統觀念的連續性晶板扭轉所組成,且此系統生成的相分離domain並不會對PHBV晶板排列造成影響。

    A semi-crystalline polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), was crystallized in the presence of poly(p-dioxanone) (PPDO).
    First of all, by comparison with the growth rate of neat PHBV at specific crystallization temperatures (Tc) from 60 oC to 90 oC, the growth rate of PHBV in blends significantly decrease with increasing PPDO contents. In addition, the growth rate of PHBV in blends of all compositions shows a maximum value with respect to Tc, while Tc at which the maximum growth rate occurs is dependent on blend composition. For PHBV/PPDO (75/25) blend system, ring-banded spherulites can be observed, and kinetic results indicate that the higher is Tmax, the longer is the initiation time for first appearance of nuclei. We also utilized scanning electron microscopy (SEM) to observe the top surface and the fractured surface in order to give complete images of the 3-D structures. On the other hand, the formation of crack and domain are two different mechanisms, reason, and location. The correlation between top surface and interior lamellar arrangement is that the lamellae are arranged perpendicularly to the substrate with cracks at ridge region but parallel to the substrate at valley region, showing counterclockwise bending on the top surface. Finally, synchrotron microbeam small-/wide-angle X-ray scattering (SAXS/WAXD) was used to further confirm growth mechanism observed by SEM.

    中文摘要 I ABSTRACT III 誌謝 XIV 目錄 XIX 圖目錄 XXI 表目錄 XXXI 第一章 研究目的與文獻回顧 1 1-1 簡介 1 1-2 週期性環帶狀球晶之相關研究 3 1-3 小角度與廣角度X-ray散射之相關研究 17 1-4 聚羥基丁酸酯共聚羥基戊酸酯之相關研究 20 1-5 研究動機與方向 26 第二章 實驗材料與方法 27 2-1 實驗藥品與材料 27 2-2 樣品製備 28 2-3 實驗使用之儀器與方法 29 2-3-1 偏光顯微鏡 (Polarized-light optical microscopy, POM) 29 2-3-2 高解析度場發式掃描電子顯微鏡 (High resolution field emission scanning electron microscopy, HR-FESEM) 29 2-3-3 微分掃描熱卡計 (Differential scanning calorimeter, DSC) 30 2-3-4 同步加速器X光 (Synchrotron microbeam X-ray) 30 2-3-4-1 小角度X光散射儀 (Small-angle X-ray scattering, SAXS) 30 2-3-4-2 廣角度X光繞射儀 (Wide-angle X-ray diffraction, WAXD) 31 第三章 結果與討論 32 3-1 PHBV/PPDO摻合系統之球晶形貌、熱行為與動力學分析 32 3-2 環帶狀球晶之上表面觀察 41 3-3 環帶狀球晶之內部晶板排列 49 3-4 Microbeam X光散射分析 53 3-5 Microbeam WAXD之分析 63 第四章 結論 70 參考文獻 73

    [1] T. Chen, T. Cai, Q. Jin, and J. Ji, "Design and fabrication of functional polycaprolactone," e-Polymers, vol. 15, no. 1, pp. 3-13, 2015.
    [2] A. J. dos Santos, L. V. Oliveira Dalla Valentina, A. A. Hidalgo Schulz, and M. A. Tomaz Duarte, "From Obtaining to Degradation of PHB:Material Properties. Part I," Ingeniería y Ciencia, vol. 13, no. 26, pp. 269-298, 2017.
    [3] K. C. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin," Polymer Bulletin, vol. 62, no. 2, pp. 225-235, 2008.
    [4] T. Kabe, T. Sato, K. i. Kasuya, T. Hikima, M. Takata, and T. Iwata, "Transition of spherulite morphology in a crystalline/crystalline binary blend of biodegradable microbial polyesters," Polymer, vol. 55, no. 1, pp. 271-277, 2014.
    [5] S. Nurkhamidah and E. M. Woo, "Unconventional Non-birefringent or Birefringent Concentric Ring-Banded Spherulites in Poly(L-lactic acid) Thin Films," Macromolecular Chemistry and Physics, vol. 214, no. 6, pp. 673-680, 2013.
    [6] E. M. Woo, Y. H. Chou, W. J. Chiang, I. T. Chen, I. H. Huang, and N. T. Kuo, "Amorphous phase behavior and crystalline morphology in blends of poly(vinyl methyl ether) with isomeric polyesters: poly(hexamethylene adipate) and poly(ɛ-caprolactone)," Polymer Journal, vol. 42, no. 5, pp. 391-400, 2010.
    [7] H. Ni'mah and E. M. Woo, "Coexisting Straight, Radial, and Banded Lamellae on the Six Corners of Hexagon-Shaped Spherulites in Poly(l-Lactide)," Macromolecular Chemistry and Physics, vol. 215, no. 19, pp. 1838-1847, 2014.
    [8] Y. L. Tseng, K. N. Chuan, and E. M. Woo, "Unusual Ringed/Dendritic Sector Faces in Poly(butylene succinate) Crystallized with Isomeric Polymer," Industrial & Engineering Chemistry Research, vol. 59, no. 16, pp. 7485-7494, 2020.
    [9] N. Yadav, S. S. Majhi, and P. K. Srivastava, "Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System," Bulletin of the Korean Chemical Society, vol. 33, no. 10, pp. 3397-3406, 2012.
    [10] I. H. Huang, L. Chang, and E. M. Woo, "Tannin Induced Single Crystalline Morphology in Poly(ethylene succinate)," Macromolecular Chemistry and Physics, vol. 212, no. 11, pp. 1155-1164, 2011.
    [11] L. Chang and E. M. Woo, "Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid)," Polymer, vol. 52, no. 1, pp. 68-76, 2011.
    [12] Z. Qiu, T. Ikehara, and T. Nishi, "Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide)," Polymer, vol. 44, no. 9, pp. 2799-2806, 2003.
    [13] C. P. Chiang and E. M. Woo, "Solvent effects on phase behavior with false UCST in blends of PVPh with aliphatic polyesters," European Polymer Journal, vol. 42, no. 8, pp. 1875-1884, 2006.
    [14] R. Zhang, X. Liu, and Y. Gu, "Morphological changes of BTDA/m-PDA polyimide banded spherulites: The effect of solvent on banding," Journal of Polymer Science Part B: Polymer Physics, vol. 46, no. 7, pp. 659-667, 2008.
    [15] N. Siti, E. M. Woo, Y. T. Yeh, F. Luo, and V. Katiyar, "Lamellae Assembly in Dendritic Spherulites of Poly(l-lactic Acid) Crystallized with Poly(p-Vinyl Phenol)," Polymers, vol. 10, no. 5, p. 545, 2018.
    [16] S. Nurkhamidah and E. M. Woo, "Effects of crystallinity and molecular weight on crack behavior in crystalline poly(L-lactic acid)," Journal of Applied Polymer Science, vol. 122, no. 3, pp. 1976-1985, 2011.
    [17] S. W. Kuo and F. C. Chang, "Miscibility behavior and specific interaction of phenolic resin with poly(acetoxystyrene) blends," Macromolecular Chemistry and Physics, vol. 203, no. 5‐6, pp. 868-878, 2002.
    [18] Z. Wang, G. C. Alfonso, Z. Hu, J. Zhang, and T. He, "Rhythmic growth-induced ring-banded spherulites with radial periodic variation of thicknesses grown from poly(ε-caprolactone) solution with constant concentration," Macromolecules, vol. 41, no. 20, pp. 7584-7595, 2008.
    [19] Z. Wang, Z. Hu, Y. Chen, Y. Gong, H. Huang, and T. He, "Rhythmic growth-induced concentric ring-banded structures in poly(ε-caprolactone) solution-casting films obtained at the slow solvent evaporation," Macromolecules, vol. 40, no. 12, pp. 4381-4385, 2007.
    [20] A. Auliawan and E. M. Woo, "Nanocomposites based on vermiculite clay and ternary blend of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide)," Polymer Composites, vol. 32, no. 12, pp. 1916-1926, 2011.
    [21] N. Jiang and H. Abe, "Miscibility and morphology study on crystalline/crystalline partially miscible polymer blends of 6-arm Poly(l-lactide) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)," Polymer, vol. 60, pp. 260-266, 2015.
    [22] K. Hamad, M. Kaseem, and F. Deri, "Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend," Polymer Bulletin, vol. 65, no. 5, pp. 509-519, 2010.
    [23] R. Dell'Erba, G. Groeninckx, G. Maglio, M. Malinconico, and A. Migliozzi, "Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends," Polymer, vol. 42, no. 18, pp. 7831-7840, 2001.
    [24] Z. Qiu, T. Ikehara, and T. Nishi, "Miscibility and crystallization behaviour of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) blends," Polymer, vol. 44, no. 24, pp. 7519-7527, 2003.
    [25] G. Lugito and E. M. Woo, "Three types of banded structures in highly birefringent poly(trimethylene terephthalate) spherulites," Journal of Polymer Science Part B: Polymer Physics, vol. 54, no. 13, pp. 1207-1216, 2016.
    [26] G. Lugito and E. M. Woo, "Multishell Oblate Spheroid Growth in Poly(trimethylene terephthalate) Banded Spherulites," Macromolecules, vol. 50, no. 15, pp. 5898-5904, 2017.
    [27] 葉玉婷, "生物可分解聚酯高分子之晶核與球晶形貌相關性及內部晶板組裝之剖析," 碩士論文, 化學工程學系, 國立成功大學, 台南市, 2018.
    [28] Y. Z. Huang, E. M. Woo, and S. Nagarajan, "Periodic Hierarchical Structures in Poly(p-dioxanone) Modulated with Miscible Diluents: Top-Surface and Interior Analyses," Industrial & Engineering Chemistry Research, vol. 61, no. 30, pp. 11046-11055, 2022.
    [29] E. M. Woo, C. H. Tu, S. Nagarajan, and G. Lugito, "In-Situ Growth of Nucleus Geometry to Dual Types of Periodically Ringed Assemblies in Poly (nonamethylene terephthalate)," Crystals, vol. 11, no. 11, p. 1338, 2021.
    [30] A. Shtukenberg, E. Gunn, M. Gazzano, J. Freudenthal, E. Camp, R. Sours, E. Rosseeva, and B. Kahr, "Bernauer's bands," ChemPhysChem, vol. 12, no. 8, pp. 1558-71, 2011.
    [31] Z. Wang, Y. Li, J. Yang, Q. Gou, Y. Wu, X. Wu, P. Liu, and Q. Gu, "Twisting of Lamellar Crystals in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Ring-Banded Spherulites," Macromolecules, vol. 43, no. 10, pp. 4441-4444, 2010.
    [32] H. M. Ye, J. Xu, B. H. Guo, and T. Iwata, "Left-or right-handed lamellar twists in poly [(R)-3-hydroxyvalerate] banded spherulite: Dependence on growth axis," Macromolecules, vol. 42, no. 3, pp. 694-701, 2009.
    [33] Y. Li, H. Huang, T. He, and Z. Wang, "Rhythmic Growth Combined with Lamellar Twisting Induces Poly(ethylene adipate) Nested Ring-Banded Structures," ACS Macro Lett, vol. 1, no. 1, pp. 154-158, 2012.
    [34] G. Lugito and E. M. Woo, "Interior Lamellar Assembly in Correlation to Top-Surface Banding in Crystallized Poly(ethylene adipate)," Crystal Growth & Design, vol. 14, no. 10, pp. 4929-4936, 2014.
    [35] E. M. Woo, L. Y. Wang, and S. Nurkhamidah, "Crystal Lamellae of Mutually Perpendicular Orientations by Dissecting onto Interiors of Poly(ethylene adipate) Spherulites Crystallized in Bulk Form," Macromolecules, vol. 45, no. 3, pp. 1375-1383, 2012.
    [36] Y. F. Chen and E. M. Woo, "Annular Multi-Shelled Spherulites in Interiors of Bulk-Form Poly(nonamethylene terephthalate)," Macromol Rapid Commun, vol. 30, no. 22, pp. 1911-1916, 2009.
    [37] E. M. Woo, S. Nurkhamidah, and Y. F. Chen, "Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate)," Phys Chem Chem Phys, vol. 13, no. 39, pp. 17841-51, 2011.
    [38] S. Nagarajan and E. M. Woo, "Morphological analyses evidencing corrugate-grating lamellae assembly in banded spherulites of Poly(ethylene adipate)," Polymer, vol. 188, 2020.
    [39] E. M. Woo, "Banded Crystalline Spherulites in Polymers and Organic Compounds: Interior Lamellar Structures Correlating with Top-Surface Topology," Journal of Advanced Chemical Engineering, vol. 5, no. 2, 2015.
    [40] C. H. Tu, E. M. Woo, and G. Lugito, "Structured growth from sheaf-like nuclei to highly asymmetric morphology in poly(nonamethylene terephthalate)," RSC Adv., vol. 7, no. 75, pp. 47614-47618, 2017.
    [41] A. Toda, T. Arita, M. Hikosaka, J. K. Hobbs, and M. J. Miles, "An atomic force microscopy observation of poly(vinylidene fluoride) banded spherulites," Journal of Macromolecular Science, Part B, vol. 42, no. 3-4, pp. 753-760, 2003.
    [42] E. M. Woo, K. C. Yen, Y. T. Yeh, and L. Y. Wang, "Biomimetically Structured Lamellae Assembly in Periodic Banding of Poly(ethylene adipate) Crystals," Macromolecules, vol. 51, no. 10, pp. 3845-3854, 2018.
    [43] M. S. Lee and E. M. Woo, "Systematic probing into periodic lamellar assembly via induced cracks in crystallized polyesters," Polymer, vol. 166, pp. 88-97, 2019.
    [44] T. Y. Chen, E. M. Woo, and S. Nagarajan, "Crystal aggregation into periodically grating-banded assemblies in phthalic acid modulated by molten poly(ethylene oxide)," CrystEngComm, vol. 22, no. 3, pp. 467-477, 2020.
    [45] T. Y. Chen, E. M. Woo, and S. Nagarajan, "Periodic Fractal-Growth Branching to Nano-Structured Grating Aggregation in Phthalic Acid," Sci Rep, vol. 10, no. 1, p. 4062, 2020.
    [46] B. F. S. Safitri, " Effects of Polymers Acting as Morphology Modulation in Self-Assembled Crystals of Chiral 2-Hydroxy-2-Phenylacetic Acids," 碩士論文, 化學工程學系, 國立成功大學, 台南市, 2022.
    [47] Y. Fujiwara, "The superstructure of melt‐crystallized polyethylene. I. Screwlike orientation of unit cell in polyethylene spherulites with periodic extinction rings," Journal of Applied Polymer Science, vol. 4, no. 10, pp. 10-15, 1960.
    [48] H. Keith and F. Padden Jr, "Ringed spherulites in polyethylene," Journal of Polymer Science, vol. 31, no. 123, pp. 415-421, 1958.
    [49] H. Keith and F. Padden Jr, "The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation," Journal of Polymer Science, vol. 39, no. 135, pp. 101-122, 1959.
    [50] H. Keith and F. Padden Jr, "Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on the kinetics of crystallization," Journal of Applied Physics, vol. 35, no. 4, pp. 1286-1296, 1964.
    [51] P. Atkins, J. De Paula, and R. Friedman, Physical chemistry: quanta, matter, and change. Oxford University Press, USA, 2014.
    [52] Y. H. Liao, S. Nagarajan, E. M. Woo, W. T. Chuang, and Y. W. Tsai, "Synchrotron X-Ray Analysis and Morphology Evidence for Stereo-Assemblies of Periodic Aggregates in Poly(3-hydroxybutyrate) with Unusual Photonic Iridescence," Macromol Rapid Commun, vol. 42, no. 14, p. 2100281, 2021.
    [53] C. M. Buchanan, S. C. Gedon, A. W. White, and M. D. Wood, "Cellulose acetate butyrate and poly(hydroxybutyrate-co-valerate) copolymer blends," Macromolecules, vol. 25, no. 26, pp. 7373-7381, 1992.
    [54] Z. Qiu, W. Yang, T. Ikehara, and T. Nishi, "Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone)," Polymer, vol. 46, no. 25, pp. 11814-11819, 2005.
    [55] B. Fei, C. Chen, H. Wu, S. Peng, X. Wang, and L. Dong, "Comparative study of PHBV/TBP and PHBV/BPA blends," Polymer International, vol. 53, no. 7, pp. 903-910, 2004.
    [56] A. Buzarovska and A. Grozdanov, "Crystallization kinetics of poly(hydroxybutyrate-co-hydroxyvalerate) and poly(dicyclohexylitaconate) PHBV/PDCHI blends: thermal properties and hydrolytic degradation," Journal of Materials Science, vol. 44, no. 7, pp. 1844-1850, 2009.
    [57] C. C. Su, E. M. Woo, and Y. T. Hsieh, "Perpendicularly oriented lamellae in poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) blended with an amorphous polymer: ultra-thin to thick films," Phys Chem Chem Phys, vol. 15, no. 7, pp. 2495-506, 2013.
    [58] C. N. Wu, E. M. Woo, and S. Nagarajan, "Periodic crystal assembly of Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid): From surface to interior microstructure," Polymer, vol. 228, p. 123866, 2021.
    [59] I. Zembouai, M. Kaci, S. Bruzaud, A. Benhamida, Y. M. Corre, and Y. Grohens, "A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing," Polymer Testing, vol. 32, no. 5, pp. 842-851, 2013.
    [60] A. Chikh, A. Benhamida, M. Kaci, I. Pillin, and S. Bruzaud, "Synergistic effect of compatibilizer and sepiolite on the morphology of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(butylene succinate) blends," Polymer Testing, vol. 53, pp. 19-28, 2016.
    [61] L. Chang, Y. H. Chou, and E. M. Woo, "Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)," Colloid and Polymer Science, vol. 289, no. 2, pp. 199-211, 2010.
    [62] Y. T. Hsieh, R. Ishige, Y. Higaki, E. M. Woo, and A. Takahara, "Microscopy and microbeam X-ray analyses in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with amorphous poly(vinyl acetate)," Polymer, vol. 55, no. 26, pp. 6906-6914, 2014.
    [63] W. Rahmayanti, "Periodic Grating Architectures in Polymer Crystals Custom-Made with Iridescent Light Interference Properties and Mechanisms," 碩士論文, 化學工程學系, 國立成功大學, 台南市, 2022.
    [64] M. Sabino, J. Feijoo, and A. Müller, "Crystallisation and morphology of neat and degraded poly(p-dioxanone)," Polymer Degradation and Stability, vol. 73, no. 3, pp. 541-547, 2001.

    下載圖示
    2025-08-15公開
    QR CODE