簡易檢索 / 詳目顯示

研究生: 吳育騰
Wu, Yu-Teng
論文名稱: 於長距離分時多工被動式光接取網路中解決效能退化之多執行緒的適當排程時機-彈性權重分配演算法
Multi-Thread Fitting Scheduling Timing – Elastic Weighted Granting Algorithm to Overcome Performance Degradation in Long Reach TDM-PONs
指導教授: 蘇銓清
Sue, Chuan-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 32
中文關鍵詞: 被動式分時多工長距離光纖網路動態頻寬分配多執行緒輪詢
外文關鍵詞: Time-Division Multiplexing Long Reach Passive Optical Networks(TDM LR-PONs), Dynamic Bandwidth Allocation(DBA), Multi-Thread Polling(MTP), Fitting scheduling timing
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來在被動式光網路(Passive Optical Networks, PON)的進展上,佈建線路上有著延伸原本短距離(Short Reach)的線路至長距離(Long Reach),稱做長距離被動式光網路(Long-Reach Passive Optical Networks, LR-PON),此架構用以服務更多距離較遠的使用者,如此一來位於在中央機房(Central Office, CO)的營運成本就可以降低。另一方面,由於位在CO的光網路終端(Optical Line Terminal, OLT)與光網路單元(Optical Network Unit, ONU)間距離的增加,傳統動態頻寬分配演算法(Dynamic Bandwidth Algorithm,DBA)在OLT與ONU間訊息傳播延遲(propagation delay)的增加下,導致其效能降低,因此在LR-PON下的DBA必須重新設計及審視。
    在本論文中,我們提出了multi-thread fitting scheduling timing-elastic weighted granting (MT-FST-EWG) 動態頻寬分配演算法,MT-FST-EWG是合併了兩個方法FST-EWG及multi-thread polling (MTP)的優點並改善了FST-EWG在LR-PON下因為long propagation delay problem產生的效能不足。MT-FST-EWG在方法分析及模擬結果的輔助驗證下,成功的解決在LR-PON下產生的long propagation delay problem,相較於原始的MTP,MT-FST-EWG的封包延遲也表現較好。

    In recent years, passive optical networks (PONs) have been widely chosen for deploying optical access networks. With the widespread deployment of PONs, research focus has shifted to their scalability, with longer reach and higher split ratio. By exploiting both optical amplifiers, long-reach PONs (LR-PONs) extend the coverage of a PON from short-reach 20 km to 100 km and beyond. By reducing the number of network elements, the network’s Capital Expenditure (Capex) and Operational Expenditure (Opex) can be reduced.
    On the other hand, due to the increased distance between optical network terminal (OLT) and optical network unit (ONU), the propagation delay increases to 1ms. When an ONU requests upstream bandwidth, it will take a longer time to receive the acknowledgement from the OLT before it can transmit its upstream packets. Thus, the traditional dynamic bandwidth allocation (DBA) in LR-PONs must be redesigned and under review.
    In this thesis, we propose a multi-thread fitting scheduling timing-elastic weighted granting (MT-FST-EWG) dynamic bandwidth allocation algorithm (MT-FST-EWG) which is to merge the advantages of both fitting scheduling timing-elastic weighted granting (FST-EWG) and multi-thread polling (MTP) and improve the effectiveness of FST-EWG shortage in LR-PON. We evaluate the throughput-delay performance of MT-FST-EWG, FST-EWG and MTP. We find that MT-FST-EWG gives lower delays and idle times than FST-EWG and MTP. At the same time, the propagation delay problem FST-EWG faced was solved by MT-FST-EWG.

    List of Tables VIII List of Figures IX Chapter1 Introduction 1 Chapter2 Related Work 4 2.1 Methods for Solving the Long Propagation Delay Problem 6 2.1.1. Initiating and Tuning 7 2.1.2. Inter-thread Scheduling 9 2.1.3. NA+ Inter-thread Scheduling 9 2.1.4. SR+ Inter-thread Scheduling 11 2.1.5. Multi-thread Polling Dynamic Bandwidth Allocation Algorithm 12 2.2 Motivation 14 Chapter3 Multi-Thread Fitting Scheduling Timing – Elastic Weighted Granting Algorithm 18 3.1 MT-FST-EWG Algorithm 18 3.2 Steps of MT-FST-EWG Algorithm and Computational Complexity 20 Chapter4 Simulation Results 23 4.1 Performance Evaluations 23 4.2 Thread Tuning Comparison 27 Chapter5 Conclusion and Future Works 30 REFERENCES 31

    [1]. G. Kramer, Ethernet Passive Optical Networks. McGraw Hill, New York, 2005.
    [2]. D. Payne and R. Davey, “Long reach access networks—Avoiding the bandwidth-price dilemma,” in Proc. Broadband Europe, Dec. 2004.
    [3]. D. Shea and J. Mitchell, “Long-reach optical access technologies,” IEEE Network, vol. 21, no. 5, pp. 5–11, Sep. 2007.
    [4]. B. Kantarci, H. Mouftah, “Bandwidth distribution solutions for performance enhancement in long-reach passive optical networks,” IEEE Commun. Surv. Tut., vol. 14, no. 3, pp. 714–733, Aug. 2012.
    [5]. M. De Andrade, J. Chen, B. Skubic, J. Ahmed, and L. Wosinska, “Enhanced IPACT: solving the over-granting problem in long-reach EPON,” TELECOMMUNICATION SYSTEMS, vol. 54, no. 2, pp. 137–146, Oct. 2013.
    [6]. J. Chen, M. De Andrade, B. Skubic, J. Ahmed, and L. Wosinska, “Enhancing IPACT with limited service for multithread DBA in long-reach EPON,” In Proc. of Asia communications and photonics conference and exhibition (ACP 2010), Dec. 2010.
    [7]. C. C. Sue, and W. N. Sung, “Fitting scheduling timing-elastic weighted granting (FST-EWG): an EPON DBA algorithm,” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 6, pp. 468–479 2012.
    [8]. M. McGarry, M. Reisslein, C. Colbourn, M. Maier, F. Aurzada, and M. Scheutzow, “Just-in-time scheduling for multichannel EPONs,” J. Lightwave Technol., vol. 26, no. 10, pp. 1204–1216, 2008.
    [9]. H. Song, B.-W. Kim and B. Mukherjee, “Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp.134–142, 2009.
    [10]. B. Skubic; J.J. Chen, J. Ahmed, B. Chen; L. Wosinska, B.-W. Kim and B. Mukherjee, “Dynamic bandwidth allocation for long-reach PON: overcoming performance degradation,” IEEE Commun. Mag., vol.48, no.11, pp.100–108, Nov. 2010.
    [11]. J. Ahmed, J. Chen, L. Wosinska, B. Chen, and B. Mukherjee, “Efficient inter-thread scheduling scheme for long-reach passive optical networks,” IEEE Commun. Mag., vol. 51, no. 2, pp. S35–S43, Feb. 2013.
    [12]. A. Helmy, H. Fathallah, and H. Mouftah, “Interleaved polling versus multi-thread polling for bandwidth allocation in long-reach PONs,” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 3, pp. 210–218, Mar. 2012.
    [13]. A. Mercian, M. P. McGarry, M. Reisslein, “Offline and online multi-thread polling in long-reach PONs: a critical evaluation,” J. Lightwave Technol., vol.31, no.12, pp.2018–2028, Jun, 2013.
    [14]. G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): A dynamic bandwidth distribution scheme in an optical access network,” Photon. Netw. Commun., vol. 4, no. 1, pp. 89–107, Jan. 2002.
    [15]. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for EPON,” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, Feb. 2002.
    [16]. S. Choi, S. Lee, T. J. Lee, M. Chung, and H. Choo, “Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs,” IEEE/OSA J. Opt. Commun. Netw., vol. 1, no. 5, pp. 484–497, Oct. 2009.
    [17]. Y. Luo and N. Ansari, “Bandwidth allocation for multiservice access on EPONs,” IEEE Commun. Mag., vol. 43, no. 2, pp. S16–S21, Feb. 2005.
    [18]. OMNET++, http://www.omnetpp.org
    [19]. W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson,“Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp. 71–86, Feb. 1997.
    [20]. M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.

    無法下載圖示 校內:2019-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE