| 研究生: |
宋秉翰 Soung, Bing-Han |
|---|---|
| 論文名稱: |
具壓力監測之神經義肢用銬型微電極研究 Development of Neural Prosthesis Cuff Electrodes Embedded with Micro-Pressure Sensors |
| 指導教授: |
朱銘祥
Ju, Ming-Shang 林宙晴 Lin, Chou ching K. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 微機電系統 、銬型電極 、神經義肢 、微壓力感測器 |
| 外文關鍵詞: | Neural Prosthesis, micro-pressure sensor, spiral cuff electrode, MEMS |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銬型電極為神經義肢的重要元件之一,可用於直接刺激感覺及運
動神經元或感測感覺神經的訊號。本研究目的為利用微機電製程研發
具壓力感測功能之銬型微電極,微電極採多點式設計以期提高神經訊
號選擇性,電容式壓力感測器可感測肌肉與神經之間的介面壓力來即
時監控神經組織的健康情形。
本研究已完成微壓力感測器設計部分,並研發完成環狀銬型陣列
電極進行動物實驗,銬型電極可穩定量取神經訊號,其訊號品質優於
本實驗室先前開發之平面電極並已驗證多電極之可行性。動物實驗以
紐西蘭家兔之坐骨神經做測試,目的為測試銬型電極收集神經訊號的
能力並驗證多電極的可行性。本研究設計之銬型電極長度為25mm,
展開寬度12.56mm,電極長寬為800µm,共有4 個頻道。利用有限元
素法吾人決定電容式微壓力感測器尺寸,所設計的感測器大小為
700µm 平方,介電層厚度為4µm,量測範圍為0~100mmHg,靈敏度為1.044x10-3pF/mmHg-pF。
Abstract
Cuff electrode is an important component of motor neural prostheses.
It can directly stimulate sensory and motor neurons or sense signals from
nerve fibers. The goal of this thesis is to design and fabricate a spiral cuff
electrode with embedded micro-pressure sensor by using
micro-electro-mechanical system (MEMS) technologies. Multi-channel
cuff electrodes may enhance the selectivity of sensing nerve signals. For
on-line health monitoring of nerve, capacitive pressure sensors are
developed to detect the pressure on the interface between muscle and
nerve.
The spiral cuff electrode was employed for measuring signals of the
sciatic nerve of New Zealand rabbits and feasibility of multi-channel of
spiral cuff has been proven. Studies of animal model have shown that the
developed cuff electrode is capable of detecting the electroneurogram
(ENG) with less level of noise as compared with our previous results. The
multi-channel ENG can be further decomposed to differentiate
dorsi-flexion and plantar flexion of rabbit ankle. The dimension of spiral
cuff electrodes was 25mm x 12.56mm. Twelve contact electrodes of a
spiral cuff electrode were fabricated and the area of each contact
electrode was 800 800 × µm. The capacitive pressure sensor was designed
by the finite element analysis. The capacitive pressure sensor has a
sensing electrode of 700 µm2, a dielectric layer with thickness of 4 µm,
and a sensitivity of 1.044x10-3pF/mmHg-pF
in the range of 0 to 100mmHg.
參考文獻
[1] M. Haugland and Andreas Lickel, “Improved method for use of natural
sensory feedback in control of grasp force for stimulated hand muscles,”
Proceedings of the 20th Annual International Conference of the IEEE Eng.
in Medicine and Biology Society vol. 20, no 5, 1998, pp. 2310-2312.
[2] Y.-C. Tai; L.-S. Fan; R.S. Muller, “IC-processed micro-motors: design,
technology, and testing,” Micro Electro Mechanical Systems, 1989,
Proceedings, An Investigation of Micro Structures, Sensors, Actuators,
Machines and Robots. IEEE , 1989, pp.: 1 -6.
[3] E. V. Goodall, J. F. de Breij, and J. Holsheimer, ‘‘Position-Selective
Activation of Peripheral Nerve Fibers with a Cuff Electrode,” IEEE Tran.
on Biomed. Eng., vol. 43, no. 8, Aug. 1996, pp. 851-856.
[4] M. Schuettler, T. Stielitz, ‘‘18polar Hybrid Cuff Electrodes for
Stimulation of Peripheral Nerves,” Proc. of the 5th Annual Conf. of the
International Functional Electrical Stimulation Society, pp. 265-268.
[5] J. J. Struijk, M. Thomsen, J. O. Larsen, and T. Sinkjær, ‘‘Cuff Electrodes
for Long-Term Recordings of Natural Sensory Information,” IEEE Eng.
in Med. and Biol., June 1999, pp. 91-98.
[6] T. Stieglitz, H. Beutel, R. Keller, M. Schuettler, and J.-U. Meyer,
‘‘Flexible, Polyimide-Based Neural Interfaces,” Proceedings of the
Seventh International Conference on Microelectronics for Neural, Fuzzy
and Bio-Inspired Systems, 1999, pp. 112 -119.
[7] F. A. Cuoco, Jr., and D. M. Durand, ‘‘Measurement of External Pressures
Generated by Nerve Cuff Electrodes,” IEEE Trans on Biomed. Eng., Vol.
8, NO. 1, Mar. 2000, pp. 35-41.
[8] G. G. Naples, J. T. Mortimer, A. Scheiner, and J. D. Sweeney, ‘‘A Spiral
Nerve Cuff Electrode for Peripheral Nerve Stimulation,” IEEE Trans. on
Biomed. Eng., vol. 35, no. 11, Nov. 1988, pp. 905-913.
[9] M. K. Haugland, J. A. Hoffer, and T. Sinkjaer, ‘‘Skin Contact Force
Information in Sensory Nerve Signals Recorded by Implanted Cuff
Electrodes,” IEEE Trans. on Biomed. Eng., vol. 2, no. 1, Mar. 1994, pp.
18-28.
[10] F. J. Rodriguez, D. Ceballos, M. Schuttler, A. Valero, E. Valderrama, T.
Stieglitz, and X. Navarro, “Polyimide cuff electrodes for peripheral nerve
stimulation,” Journal of Neuroscience Methods 98, Feb. 2000, pp.
105-118.
[11] L. C. Junqueira and J. Carneiro, Basic Histology, Lange Medical
Publications, Los Altos, Calif., 1980.
[12] C. Veraart, W. M. Grill, and J. T. Mortimer, “Selective Control of
Muscle Activation with a Multipolar Nerve Cuff Electrode,” IEEE Trans
on Biomed. Eng., vol. 40, no. 7, July 1993, pp. 640-653.
[13] P. J. Rousche, D. S. Pellinen, D. P. Pivin, Jr., J. C. Williams, R. J. Vetter,
and D. R. Kipke, “Flexible Polyimide-Based Intracortical Electrode Arrays
with Bioactive Capability,” IEEE Trans on Biomed. Eng., vol. 48, no. 3,
Mar. 2001, pp.361-366.
[14] C. Cristalli, M. R. Neuman, “A Capacitive Pressure Sensor for
Measurement of Interfacial Pressure between a Sphygmomanometer Cuff
and the Arm,” IEEE-EMBC and CMBEC Theme 7: Instrumentation, 1997,
pp. 1541-1542.
[15] A. El-Bahar, Y. Nemirovsky, J.F. Soustiel, M. Feinsod, “Micromachined
CMOS in vivo pressure sensor,” Mediterranean Electrotechnical
Conference, 1998. MELECON 98., 9th , vol: 1 , 1998, pp. 306 -310.
[16] C. Hierold, B. Clasbrummel, D. Behrend, T. Scheiter, M. Steger, K.
Oppermann, H. Kapels, et. al., “Low power integrated pressure sensor
system for medical applications,” Sensors and Actuators A: Physical vol:
73, Issue: 1-2, Mar. 9, 1999, pp. 58-67.
[17] N. Holmström, P. Nilsson, Carlsten, Johan; Bowald, Staffan, “Long-term
in vivo experience of an electrochemical sensor using the potential step
technique for measurement of mixed venous oxygen pressure,” Biosensors
and Bioelectronics vol: 13, Issue: 12, Dec. 1, 1998, pp. 1287-1295.
[18] K. Stangel, S. Kolnsberg, D. Hammerschmidt, B.J. Hosticka, H.K.
Trieu, , W. Mokwa, “A programmable intraocular CMOS pressure sensor
system implant”, Solid-State Circuits, IEEE Journal of , vol: 36 Issue: 7 ,
July 2001, pp: 1094 –1100.
[19] T. Eggers, C. Marschner, U. Marschner, B. Clasbrummel, R. Laur, J.
Binder,“ Advanced hybrid integrated low-power telemetric pressure
monitoring system for biomedical applications”, The Thirteenth Annual
International Conference on Micro Electro Mechanical Systems, 2000.
MEMS 2000., pp: 329 –334.
[20] S. Chatzandroulis, D. Tsoukalas, P.A. Neukomm, “A miniature pressure
system with a capacitive sensor and a passive telemetry link for use in
implantable applications”, Microelectromechanical Systems, Journal of ,
vol: 9 Issue: 1 , Mar. 2000, pp: 18 –23.
[21] M. Madou, “Fundamental of Microfabrication”, CRC, New York, 1997.
[22] 林昌緯,“周邊神經生物力學及電學分析與神經電極應用,” 國立成功
大學機械工程學系碩士論文, 2002
[23] 簡欣鈞,“以微系統製程設計與研製神經性義肢用微電極,” 國立成功
大學機械工程學系碩士論文, 2001