簡易檢索 / 詳目顯示

研究生: 宋秉翰
Soung, Bing-Han
論文名稱: 具壓力監測之神經義肢用銬型微電極研究
Development of Neural Prosthesis Cuff Electrodes Embedded with Micro-Pressure Sensors
指導教授: 朱銘祥
Ju, Ming-Shang
林宙晴
Lin, Chou ching K.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 81
中文關鍵詞: 微機電系統銬型電極神經義肢微壓力感測器
外文關鍵詞: Neural Prosthesis, micro-pressure sensor, spiral cuff electrode, MEMS
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銬型電極為神經義肢的重要元件之一,可用於直接刺激感覺及運
    動神經元或感測感覺神經的訊號。本研究目的為利用微機電製程研發
    具壓力感測功能之銬型微電極,微電極採多點式設計以期提高神經訊
    號選擇性,電容式壓力感測器可感測肌肉與神經之間的介面壓力來即
    時監控神經組織的健康情形。
    本研究已完成微壓力感測器設計部分,並研發完成環狀銬型陣列
    電極進行動物實驗,銬型電極可穩定量取神經訊號,其訊號品質優於
    本實驗室先前開發之平面電極並已驗證多電極之可行性。動物實驗以
    紐西蘭家兔之坐骨神經做測試,目的為測試銬型電極收集神經訊號的
    能力並驗證多電極的可行性。本研究設計之銬型電極長度為25mm,
    展開寬度12.56mm,電極長寬為800µm,共有4 個頻道。利用有限元
    素法吾人決定電容式微壓力感測器尺寸,所設計的感測器大小為
    700µm 平方,介電層厚度為4µm,量測範圍為0~100mmHg,靈敏度為1.044x10-3pF/mmHg-pF。

    Abstract
    Cuff electrode is an important component of motor neural prostheses.
    It can directly stimulate sensory and motor neurons or sense signals from
    nerve fibers. The goal of this thesis is to design and fabricate a spiral cuff
    electrode with embedded micro-pressure sensor by using
    micro-electro-mechanical system (MEMS) technologies. Multi-channel
    cuff electrodes may enhance the selectivity of sensing nerve signals. For
    on-line health monitoring of nerve, capacitive pressure sensors are
    developed to detect the pressure on the interface between muscle and
    nerve.
    The spiral cuff electrode was employed for measuring signals of the
    sciatic nerve of New Zealand rabbits and feasibility of multi-channel of
    spiral cuff has been proven. Studies of animal model have shown that the
    developed cuff electrode is capable of detecting the electroneurogram
    (ENG) with less level of noise as compared with our previous results. The
    multi-channel ENG can be further decomposed to differentiate
    dorsi-flexion and plantar flexion of rabbit ankle. The dimension of spiral
    cuff electrodes was 25mm x 12.56mm. Twelve contact electrodes of a
    spiral cuff electrode were fabricated and the area of each contact
    electrode was 800 800 × µm. The capacitive pressure sensor was designed
    by the finite element analysis. The capacitive pressure sensor has a
    sensing electrode of 700 µm2, a dielectric layer with thickness of 4 µm,
    and a sensitivity of 1.044x10-3pF/mmHg-pF
    in the range of 0 to 100mmHg.

    目錄 中文摘要......................................................................................i 英文摘要......................................................................................ii 誌謝..............................................................................................iii 中文目錄......................................................................................iv 圖目錄..........................................................................................vi 表目錄..........................................................................................viii 符號說明......................................................................................ix 第一章緒論..............................................................................1 1-1 研究背景......................................................................................... 1 1-2 文獻回顧......................................................................................... 4 1-3 研究動機與目的............................................................................. 6 第二章方法與實驗....................................................................7 2-1 微機電系統技術............................................................................. 7 2-1-1 面型微細加工...................................................................... 8 2-1-2 旋轉塗佈技術...................................................................... 9 2-1-3 電子束薄膜蒸鍍技術.......................................................... 10 2-1-4 光微影及光蝕刻技術.......................................................... 11 2-2 神經性義肢簡介............................................................................. 12 2-2-1 神經系統與神經電極.......................................................... 12 2-2-2 銬型神經電極設計原理...................................................... 14 2-3 具微壓力感測功能之銬型電極..................................................... 16 2-3-1 微壓力感測器簡介.............................................................. 16 2-3-2 電容感測原理....................................................................... 18 2-3-3 微壓力感測器設計考量與步驟......................................... 20 2-4 製程步驟......................................................................................... 26 2-5 動物實驗......................................................................................... 30 第三章結果與討論....................................................................32 3-1 壓力感測功能設計結果................................................................. 32 3-1-1 介電層厚度模擬結果........................................................... 32 3-1-2 電容式壓力感測器設計規格............................................... 39 3-2 微機電製程結果............................................................................. 40 3-2-1 聚醯亞胺的塗佈及顯影....................................................... 40 3-2-2 介電層材料之選擇............................................................... 43 3-2-3 銬型電極設計結果............................................................... 44 3-2-4 環狀銬型電極製作結果....................................................... 47 3-3 動物實驗結果................................................................................. 49 3-3-1 電極背景雜訊測試............................................................... 50 3-3-2 踝關節蹠屈及背屈之神經訊號量測結果.......................... 51 3-3-3 不同牽張速度之神經訊號結果.......................................... 55 3-3-4 環狀銬型電極之多頻道效果驗證...................................... 58 3-3-5 系統參數鑑別....................................................................... 61 3-4 討論................................................................................................. 65 3-4-1 環狀銬型電極之微壓力感測設計..................................... 65 3-4-2 薄膜製程.............................................................................. 67 3-4-3 動物實驗結果討論.............................................................. 69 第四章結論與建議....................................................................71 4-1 結論................................................................................................. 71 4-2 建議................................................................................................. 73 參考文獻......................................................................................74 附錄..............................................................................................77 表目錄 表3-1 有限元素網格分割數目................................................................ 34 表3-2 模擬參數表.................................................................................... 35 表3-3 介電層厚度與靈敏度.................................................................... 39 表3-4 電容式壓力感測器規格表............................................................ 39 圖目錄 圖1-1 周邊神經系統.............................................................................. 3 圖2-1 體型微細加工示意圖.................................................................. 8 圖2-2 面型微細加工示意圖.................................................................. 8 圖2-3 光阻旋塗機結構示意圖.............................................................. 10 圖2-4 以電子束加熱蒸鍍源.................................................................. 11 圖2-5 神經義肢範例:視網膜晶片...................................................... 14 圖2-6 手銬型電極示意圖...................................................................... 15 圖2-7 環狀銬型電極示意圖.................................................................. 15 圖2-8 壓電式壓力感測器(a)相對壓力量測壓力感測器 (b)絕對壓力量測壓力感測器.............................................................. 17 圖2-9 電容及電容阻抗對位移的關係.................................................. 18 圖2-10 基本電容電路.............................................................................. 19 圖2-11 具壓力量測之銬型電極結構示意圖.......................................... 21 圖2-12 電極介面間摩擦力示意圖.......................................................... 25 圖2-13 具壓力感測功能之銬型電極製程圖.......................................... 28 圖2-14 矽膠薄片伸張夾持器.................................................................. 28 圖2-15 製程用光罩圖.............................................................................. 29 圖2-16 三環四極銬型電極...................................................................... 30 圖2-17 動物實驗設備架構示意圖.......................................................... 31 圖2-18 氣壓式牽張機構.......................................................................... 31 圖3-1 繞神經之薄膜模型圖.................................................................. 33 圖3-2 邊界固定方式及網格建立圖...................................................... 34 圖3-3 設計參數示意圖.......................................................................... 35 圖3-4 裝置受最大壓力時應力分佈...................................................... 36 圖3-5 介電層厚度變化和所受壓力的關係.......................................... 37 圖3-6 感測器輸出電壓和所受壓力的關係.......................................... 38 圖3-7 聚亞醯胺厚度與末轉速關係...................................................... 41 圖3-8 聚醯亞胺顯影結果...................................................................... 42 圖3-9 PDMS 混和攪拌產生氣泡.......................................................... 43 圖3-10 PDMS 厚度和塗佈第二轉速關係............................................ 44 圖3-11 電極設計因素.............................................................................. 44 圖3-12 電刺激用環形電極成品圖.......................................................... 45 圖3-13 不同電極間距量測之兔子坐骨神經蹠屈動作神經電訊號圖... 46 圖3-14 環狀銬型電極製作過程圖.......................................................... 48 圖3-15 電極雜訊比較圖.......................................................................... 50 圖3-16 銬型電極埋入坐骨神經.............................................................. 52 圖3-17 腳板蹠屈、背屈作動訊號圖...................................................... 52 圖3-18 兔子腳板背屈之神經訊號均方根值.......................................... 54 圖3-19 多頻道量測結果.......................................................................... 54 圖3-20 兔子固定膝關節角度下踝關節作動速度為15 s o / 之 (a)神經訊號圖及(b)均方根值................................................................... 56 圖3-21 兔子固定膝關節角度下踝關節作動速度為30 s o / 之 (a)神經訊號圖及(b)均方根值................................................................... 57 圖3-22 兩極式多電極量測結果.............................................................. 59 圖3-23 三極式多電極量測結果.............................................................. 60 圖3-24 系統鑑別輸入訊號...................................................................... 61 圖3-25 系統鑑別模擬結果...................................................................... 62 圖3-26 系統鑑別模擬3 結果.................................................................. 63 圖3-27 電極正負端接法.......................................................................... 67

    參考文獻
    [1] M. Haugland and Andreas Lickel, “Improved method for use of natural
    sensory feedback in control of grasp force for stimulated hand muscles,”
    Proceedings of the 20th Annual International Conference of the IEEE Eng.
    in Medicine and Biology Society vol. 20, no 5, 1998, pp. 2310-2312.
    [2] Y.-C. Tai; L.-S. Fan; R.S. Muller, “IC-processed micro-motors: design,
    technology, and testing,” Micro Electro Mechanical Systems, 1989,
    Proceedings, An Investigation of Micro Structures, Sensors, Actuators,
    Machines and Robots. IEEE , 1989, pp.: 1 -6.
    [3] E. V. Goodall, J. F. de Breij, and J. Holsheimer, ‘‘Position-Selective
    Activation of Peripheral Nerve Fibers with a Cuff Electrode,” IEEE Tran.
    on Biomed. Eng., vol. 43, no. 8, Aug. 1996, pp. 851-856.
    [4] M. Schuettler, T. Stielitz, ‘‘18polar Hybrid Cuff Electrodes for
    Stimulation of Peripheral Nerves,” Proc. of the 5th Annual Conf. of the
    International Functional Electrical Stimulation Society, pp. 265-268.
    [5] J. J. Struijk, M. Thomsen, J. O. Larsen, and T. Sinkjær, ‘‘Cuff Electrodes
    for Long-Term Recordings of Natural Sensory Information,” IEEE Eng.
    in Med. and Biol., June 1999, pp. 91-98.
    [6] T. Stieglitz, H. Beutel, R. Keller, M. Schuettler, and J.-U. Meyer,
    ‘‘Flexible, Polyimide-Based Neural Interfaces,” Proceedings of the
    Seventh International Conference on Microelectronics for Neural, Fuzzy
    and Bio-Inspired Systems, 1999, pp. 112 -119.
    [7] F. A. Cuoco, Jr., and D. M. Durand, ‘‘Measurement of External Pressures
    Generated by Nerve Cuff Electrodes,” IEEE Trans on Biomed. Eng., Vol.
    8, NO. 1, Mar. 2000, pp. 35-41.
    [8] G. G. Naples, J. T. Mortimer, A. Scheiner, and J. D. Sweeney, ‘‘A Spiral
    Nerve Cuff Electrode for Peripheral Nerve Stimulation,” IEEE Trans. on
    Biomed. Eng., vol. 35, no. 11, Nov. 1988, pp. 905-913.
    [9] M. K. Haugland, J. A. Hoffer, and T. Sinkjaer, ‘‘Skin Contact Force
    Information in Sensory Nerve Signals Recorded by Implanted Cuff
    Electrodes,” IEEE Trans. on Biomed. Eng., vol. 2, no. 1, Mar. 1994, pp.
    18-28.
    [10] F. J. Rodriguez, D. Ceballos, M. Schuttler, A. Valero, E. Valderrama, T.
    Stieglitz, and X. Navarro, “Polyimide cuff electrodes for peripheral nerve
    stimulation,” Journal of Neuroscience Methods 98, Feb. 2000, pp.
    105-118.
    [11] L. C. Junqueira and J. Carneiro, Basic Histology, Lange Medical
    Publications, Los Altos, Calif., 1980.
    [12] C. Veraart, W. M. Grill, and J. T. Mortimer, “Selective Control of
    Muscle Activation with a Multipolar Nerve Cuff Electrode,” IEEE Trans
    on Biomed. Eng., vol. 40, no. 7, July 1993, pp. 640-653.
    [13] P. J. Rousche, D. S. Pellinen, D. P. Pivin, Jr., J. C. Williams, R. J. Vetter,
    and D. R. Kipke, “Flexible Polyimide-Based Intracortical Electrode Arrays
    with Bioactive Capability,” IEEE Trans on Biomed. Eng., vol. 48, no. 3,
    Mar. 2001, pp.361-366.
    [14] C. Cristalli, M. R. Neuman, “A Capacitive Pressure Sensor for
    Measurement of Interfacial Pressure between a Sphygmomanometer Cuff
    and the Arm,” IEEE-EMBC and CMBEC Theme 7: Instrumentation, 1997,
    pp. 1541-1542.
    [15] A. El-Bahar, Y. Nemirovsky, J.F. Soustiel, M. Feinsod, “Micromachined
    CMOS in vivo pressure sensor,” Mediterranean Electrotechnical
    Conference, 1998. MELECON 98., 9th , vol: 1 , 1998, pp. 306 -310.
    [16] C. Hierold, B. Clasbrummel, D. Behrend, T. Scheiter, M. Steger, K.
    Oppermann, H. Kapels, et. al., “Low power integrated pressure sensor
    system for medical applications,” Sensors and Actuators A: Physical vol:
    73, Issue: 1-2, Mar. 9, 1999, pp. 58-67.
    [17] N. Holmström, P. Nilsson, Carlsten, Johan; Bowald, Staffan, “Long-term
    in vivo experience of an electrochemical sensor using the potential step
    technique for measurement of mixed venous oxygen pressure,” Biosensors
    and Bioelectronics vol: 13, Issue: 12, Dec. 1, 1998, pp. 1287-1295.
    [18] K. Stangel, S. Kolnsberg, D. Hammerschmidt, B.J. Hosticka, H.K.
    Trieu, , W. Mokwa, “A programmable intraocular CMOS pressure sensor
    system implant”, Solid-State Circuits, IEEE Journal of , vol: 36 Issue: 7 ,
    July 2001, pp: 1094 –1100.
    [19] T. Eggers, C. Marschner, U. Marschner, B. Clasbrummel, R. Laur, J.
    Binder,“ Advanced hybrid integrated low-power telemetric pressure
    monitoring system for biomedical applications”, The Thirteenth Annual
    International Conference on Micro Electro Mechanical Systems, 2000.
    MEMS 2000., pp: 329 –334.
    [20] S. Chatzandroulis, D. Tsoukalas, P.A. Neukomm, “A miniature pressure
    system with a capacitive sensor and a passive telemetry link for use in
    implantable applications”, Microelectromechanical Systems, Journal of ,
    vol: 9 Issue: 1 , Mar. 2000, pp: 18 –23.
    [21] M. Madou, “Fundamental of Microfabrication”, CRC, New York, 1997.
    [22] 林昌緯,“周邊神經生物力學及電學分析與神經電極應用,” 國立成功
    大學機械工程學系碩士論文, 2002
    [23] 簡欣鈞,“以微系統製程設計與研製神經性義肢用微電極,” 國立成功
    大學機械工程學系碩士論文, 2001

    下載圖示 校內:2003-07-18公開
    校外:2003-07-18公開
    QR CODE