簡易檢索 / 詳目顯示

研究生: 林佳鴻
Lin, Chia-Hung
論文名稱: 3維毆式空間中的最小曲面
Minimal Surfaces in R3
指導教授: 劉瓊如
Liu, Chiung-Ju
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 72
外文關鍵詞: complete minimal surface, finite total curvature, Enneper-Weierstrass parameterization
相關次數: 點閱:126下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇文章主要是以 Osserman 的「A Survey of Minimal Surfaces」為基礎所寫的讀書報告。另外也參閱了 Osserman 在1959年到1964年間所寫的一系列論文。而 Barbosa 和 Colares 的「Minimal Surfaces in R3」,以及 Dierkes 的「Minimal surfaces I」這兩本書,也是我這篇論文的重要參考著作。

    這篇論文的第1,2,4章是一些最小曲面的性質的介紹。在第3,5章pp是以複變觀點來看最小曲面問題。第6,7章pp探討最小曲面上的高斯映射,特別是高斯映射所沒有對應到的值的數目與最小完備曲面的關係。在最後的第8,9章及附錄,我們列出一些重要的例子及其圖形。

    This report is based on Osserman, A Survey of Minimal Surfaces, and Barbosa and Colares, Minimal Surfaces in R3.

    Chapter 1 to 5 review the basic definitions and properties of surfaces and minimal surface theory. The analysis of complex variables is particularly useful in studying minimal surfaces: the notion of harmonic functions is described in Chapter 3 and that of Enneper-Weierstrass parametrization is described in Chapter 5. The following two Chapter 6 and 7 discuss the relation between a complete minimal surface and its image under Gauss map.
    Finally, some examples and figures of minimal surfaces are given in Chapter 8 and 9 while their computer program formulas are listed in the Appendix.

    1 The Geometry of Gauss Map 02 2 Plateau's Problem 10 3 Relationships between Harmonic Functions and Minimal Surfaces 17 4 Riemann Manifolds and Complete Minimal Surfaces 23 5 Enneper-Weierstrass Parameterization and Gauss map 29 6 Classification of Complete Minimal Surfaces in R3 36 7 Complete Minimal Surfaces with Finite Total Curvature 41 8 Examples of Complete Minimal Surfaces in R3 49 8.1 Enneper's surface 50 8.2 Catenoid 52 8.3 Scherk's surface 54 8.4 Helicoid 56 8.5 Properties of the given minimal surfaces 58 9 More Examples of Minimal Surfaces in R3 60 9.1 K. Voss surface 60 9.2 Catalan's surface 60 9.3 Henneberg's surface 61 9.4 Costa's surface 62 9.5 Bour's surface 64 9.6 Richmond's surface 65 A Formula of Minimal Surfaces in Chapter8 and Chapter9 69

    L. V. Ahlfors. Complex analysis. McGraw-Hill Book Co., New York, third edition, 1978. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics.

    L. V. Ahlfors and L. Sario. Riemann surfaces. Princeton Mathematical Series, No. 26. Princeton University Press, Princeton, N.J., 1960.

    F. J. Almgren, Jr. Reviews: Geometric Measure Theory. A Beginner's Guide. Amer. Math. Monthly, 96(8):753--756, 1989.

    V. Bangert. Total curvature and the topology of complete surfaces. Compositio Math., 41(1):95--105, 1980.

    J. L. M. Barbosa and A. G. Colares. Minimal surfaces in R3, volume 1195 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. Translated from the Portuguese.

    J. B. Conway. Functions of one complex variable, volume 11 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1978.

    C. J. Costa. Example of a complete minimal immersion in R3 of genus one and three embedded ends. Bol. Soc. Brasil. Mat., 15(1-2):47--54, 1984.

    R. Courant. Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. Interscience Publishers, Inc., New York, N.Y., 1950. Appendix by M. Schiffer.

    U. Dierkes, S. Hildebrandt, A. Kuster, and O. Wohlrab. Minimal surfaces. I, volume 295 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. Boundary value problems.

    M. P. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese.

    J. Douglas. Solution of the problem of Plateau. Trans. Amer. Math. Soc., 33(1):263--321, 1931.

    T. W. Gamelin. Complex analysis. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2001.

    A. Gray. Modern differential geometry of curves and surfaces with Mathematica.
    CRC Press, Boca Raton, FL, second edition, 1998.

    D. Hoffman and H. Karcher. Complete embedded minimal surfaces of finite total curvature. In Geometry, V, volume 90 of Encyclopaedia Math. Sci., pages 5--93, 267--272. Springer, Berlin, 1997.

    D. Hoffman and W. H. Meeks, III. Embedded minimal surfaces of finite topology.
    Ann. of Math. (2), 131(1):1--34, 1990.

    D. Hoffman and W. H. Meeks, III. Minimal surfaces based on the catenoid. Amer. Math. Monthly, 97(8):702--730, 1990.

    D. A. Hoffman and W. Meeks, III. A complete embedded minimal surface in R3 with genus one and three ends. J. Differential Geom., 21(1):109--127, 1985.

    D. A. Hoffman and W. H. Meeks, III. Complete embedded minimal surfaces of finite total curvature. Bull. Amer. Math. Soc. (N.S.), 12(1):134--136, 1985.

    H. Hornich. Literaturberichte: Eindeutige analytische Funktionen. Monatsh. Math. Phys., 45(1):A4--A5, 1936. R. Nevanlinna (Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 46), VIII+353 S. J. Springer, Berlin 1936. Preis geb. RM 29,40.

    A. Huber. On subharmonic functions and differential geometry in the large. Comment. Math. Helv., 32:13--72, 1957.

    Y. Kawakami. On the totally ramified value number of the Gauss map of minimal surfaces. Proc. Japan Acad. Ser. A Math. Sci., 82(1):1--3, 2006.

    J. M. Lee. Introduction to topological manifolds, volume 202 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.

    J. M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003.

    F. J. Lopez. The classification of complete minimal surfaces with total curvature greater than -12pi. Trans. Amer. Math. Soc., 334(1):49--74, 1992.

    W. H. Meeks, III. The classification of complete minimal surfaces in R3 with total curvature greater than -8pi. Duke Math. J., 48(3):523--535, 1981.

    W. H. Meeks, III. A survey of the geometric results in the classical theory of minimal surfaces. Bol. Soc. Brasil. Mat., 12(1):29--86, 1981.

    W. H. Meeks, III. Proofs of some classical theorems in minimal surface theory. Indiana Univ. Math. J., 54(4):1031--1045, 2005.

    R. Miyaoka and K. Sato. On complete minimal surfaces whose Gauss maps miss two directions. Arch. Math. (Basel), 63(6):565--576, 1994.

    R. Nevanlinna. Eindeutige analytische Funktionen. Springer-Verlag, Berlin, 1974. Zweite Auflage, Reprint, Die Grundlehren der mathematischen Wissenschaften, Band 46.

    J. C. C. Nitsche. On new results in the theory of minimal surfaces. Bull. Amer. Math. Soc., 71:195--270, 1965.

    R. Osserman. Proof of a conjecture of Nirenberg. Comm. Pure Appl. Math., 12:229--232, 1959.

    R. Osserman. On the Gauss curvature of minimal surfaces. Trans. Amer. Math. Soc., 96:115--128, 1960.

    R. Osserman. Minimal surfaces in the large. Comment. Math. Helv., 35:65--76, 1961.

    R. Osserman. On complete minimal surfaces. Arch. Rational Mech. Anal., 13:392--404, 1963.

    R. Osserman. Global properties of minimal surfaces in E3 and En. Ann. of Math. (2), 80:340--364, 1964.

    R. Osserman. A proof of the regularity everywhere of the classical solution to Plateau's problem. Ann. of Math. (2), 91:550--569, 1970.

    R. Osserman. A survey of minimal surfaces. Dover Publications Inc., New York, second edition, 1986.

    B. P. Palka. An introduction to complex function theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1991.

    A. Pressley. Elementary differential geometry. Springer Undergraduate Mathematics Series. Springer-Verlag London Ltd., London, 2001.

    T. Rado. On the problem of Plateau. Springer-Verlag, New York, 1971. Subharmonic functions, Reprint.

    H. L. Royden. On a class of null-bounded Riemann surfaces. Comment. Math. Helv., 34:52--66, 1960.

    W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987.

    R. Sa Earp and H. Rosenberg. On values of the Gauss map of complete minimal surfaces in R3. Comment. Math. Helv., 63(4):579--586, 1988.

    K. Shiohama. Minimal immersions of compact Riemannian manifolds in complete and non-compact Riemannian manifolds. Kodai Math. Sem. Rep., 22:77--81, 1970.

    G. Springer. Introduction to Riemann surfaces. Addison-Wesley Publishing Company, Inc., Reading, Mass., 1957.

    A. A. Tuzhilin. Global properties of minimal surfaces in R3 and H3 and their Morse type indices. In Minimal surfaces, volume 15 of Adv. Soviet Math., pages 193--233. Amer. Math. Soc., Providence, RI, 1993.

    A. J. Vikaruk. The Gauss mappings for minimal surfaces. Mat. Zametki, 28(1):79--84, 168, 1980.

    F. Xavier. Erratum to the paper: ``The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere' [Ann. of Math. (2) 113 (1981), no. 1, 211--214; MR 82b:53015]. Ann. of Math. (2)}, 115(3):667, 1982.

    S. T. Yau. Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J., 25(7):659--670, 1976.

    下載圖示 校內:立即公開
    校外:2008-06-23公開
    QR CODE