| 研究生: |
陳靜怡 Chen, Ching-Yi |
|---|---|
| 論文名稱: |
幾丁聚醣/聚丙烯酸奈米纖維孔洞結構之製備及其應用 |
| 指導教授: |
洪敏雄
Hon, Ming-Hsiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 奈米纖維 、幾丁聚醣 |
| 外文關鍵詞: | nanofiber, nanofibrous, chitosan |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用幾丁聚醣與聚丙烯酸兩種聚電解質,藉由其間的靜電庫倫力形成幾丁聚醣/聚丙烯酸錯合物。由傅立葉紅外線光譜分析確定錯合物中有NH3+與COO-鍵結。控制溶液,可製備奈米纖維以及奈米纖維孔洞結構。實驗中分別使用醋酸、己二酸、蘋果酸與琥珀酸等羧酸溶解幾丁聚醣,再與聚丙烯酸以微滴法混合後,分成兩種結構:一為懸浮溶液錯合物結構;另一為經冷凍乾燥孔洞結構。實驗發現利用己二酸溶解的幾丁聚醣溶液與聚丙烯酸錯合物在pH=3下可得到直徑50~200nm的奈米纖維;經過冷凍乾燥後可得到規則的奈米纖維孔洞結構。由X光繞射分析的峰值可知錯合物當中亦有羧酸結晶,證明結晶酸影響幾丁聚醣分子鏈伸展。另外,pH值對形貌也有影響,高pH時不利幾丁聚醣的溶解,不易與聚丙烯酸形成錯合物,無法形成規則孔洞結構。降低pH值,網絡成形。幾丁聚醣/聚丙烯酸的體積比可改變孔洞結構的形貌,於3:1比例下可得細纖維且高緻密度的結構。
將此奈米纖維孔洞結構應用在氨氣的氣體感測上。顯示奈米纖維所得的靈敏度大於薄膜結構者。
In this study, Chitosan(CS) and Poly(acrylic acid)(PAA), two polyelectrolytes, were used to fabricate complex through electrostatic force. According to FT-IR analysis, there exists NH3+ and COO- bonding in the complex. CS-PAA nanofibers and nanofibrous structure were prepared successfully by self-assembling in proper solution environments.
CS was dissolved in acetic acid, adipic acid, malic acid and succinic acid respectively and then blended with PAA through a modified dropping method. By utilizing adipic acid to dissolve CS and adjusting the reaction solution of pH value to 3, CS-PAA nanofibers ranging from 50 to 200nm can be formed in a suspension solution. Also, a nanofibrous structure can be formed by freeze-drying process. It consists of fibers from 50nm to 300nm in diameter and stands a 3-D order structure. The reason could be assumed as the steric structure of the adipic acid. By examining XRD pattern, the peaks of complex could be referred to those of acids which the crystallinity has effects on the chain relaxation of CS. Higher pH value of the solution results in a lower solubility of CS, and makes more difficult to form complex with PAA. When pH is at 3, nanofibers and interconnected nanofibrous structure would be formed.
The CS-PAA nanofibrous structure has a great potential in gas sensor which needs a large surface area. NH3 was adopted as the detected gas and AC impedance was used for signal analyses. Comparing the sensitivity between film structure and nanofibrous structure, it was found that the sensitivity factor of nanofibrous structure was larger than that of film.
[1]謝建德, 陳金銘, “奈米一維材料製造及特性研究”, 工業材料雜誌, 奈米平台技術特刊, 第213期, 93年9月, P.95
[2]莊仲揚, ”幾丁聚醣/丙烯酸共聚體合成與性質研究”, 台灣大學化學工程學系碩士論文, 2001, pp.4-5
[3]葉陶淵, “化學感測器中氣體感測器的新動向”, 科儀新知, 第二十四卷四期, 1999, P.72
[4]王建文, “糖反應幾丁聚醣/聚乙二醇生醫可降解性高分子之製備與生物評估”, 成大材料與科學工程研究所博士論文, 2004, pp.6-9
[5]蔡漢蓉, “幾丁聚醣在水產養殖廢水處理之應用”, 國立台灣大學食品科技研究所, 碩士論文, 1997
[6] Muzzarelli, R. A. A., ”Determination of the degree of acetylation of chitosns by first derivative ultraviolet spectrometry”. Carbonhydr. Polym. 5, 461-472, 1985
[7] Knorr D, ”Functional properties of chitin and chitosan”, J Food Technol. 48, 36, 1984
[8]余柏毅, “幾丁聚醣、膠原蛋白、明膠之具表面微構形膜材之製備與其在組織工程上之應用”, 私立元智大學化工程學系研究所, 碩士論文, 2003, p.4
[9] Sanna T., Kurita K., Ogura K., Lwakura Y., “Studies on chitin : IR spectroscopic determineation the degree of deacetylation”, Polymer, 19, 458, 1978
[10] Toei K., Kohara T., “A conductometric method for colloid titrations”, Anal. Chem. Acta., 83, 59, 1976
[11] Holan Z., Voyruba J., “New method of chitin determination based on deacetylation and gas-liquid chromatographic assay of liberated acetic acid”, J. Chromatography., 190, 67, 1980
[12] Alonso I. G., Peniche-Coras C., Nieto J. M., “Determination of degree of acetylation of chitin by analysis”, J. Thermal Analysis., 28, 189, 1983
[13] Kurita K., “Chemistry and application of chitin and chitosan,” Polymer Degradation and Stability”, 59, 117-120, 1998
[14] Domard A., and Rinaudo M., ”Preparation and characterization of fully deacetylated chitasan”, Int. J. Biol. Macromol., 5(2), 49-52, 1983
[15] Muzzarelli, R.A.A., “Chitin and its derivatives: New trends of applied research,” Carbonhydr. Polym., 3, 53-75, 1983
[16]吳建忠, “羧酸改質幾丁聚醣溶液物理性質”, 私立元智大學化學工程學研究所, 碩士論文, 2002, pp.6-7
[17]郭豪飛、林秀麗, 第24屆高分子研討會論文集, 第15頁, 2001
[18] Muzzarelli, R.A.A.,“Chitin Pergamon Press”, New York, 1977
[19] Dumitriu S., Chornet E., “Inclusion and release of proteins from polysaccharide-based polyion complex”, Advanced Drug Delivery Reviews, 31, 223-246, 1998
[20] Hoffman A. S., “ Hydrogels for Biomedical Applications” Advanced Drug Delivery Reviews, 43, 3-12, 2002
[21]陳文彬, “幾丁聚醣/硫酸化軟骨素錯合物的製備與特性之研究”, 高雄醫學大學化學研究所, 碩士論文, 2001, pp.15-16
[22]Chavasit V., Torres J. A., “Chitosan-Poly(acrylic acid): Mechanism of Complex Formation and Potential Industrial Applications”, Biotechnol. Prog., 6, 2-6, 1990
[23] Nam Y. S., Park T. G., “Biodegradable polymeric microcellular foams by modified thermally induced phase separation method”, Biomater., 20, 1783, 1999
[24] Mikos A. G., Thorsen A. J., Czerwonka L. A., Bao Y., Langer R., Winslow D.N., Vacanti J. P., “Preparation and characterization of poly(L-lactic acid) foams”, Polymer, 35, 1068, 1994
[25] Park A., Wu B., Griffith L. G., “Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion”, J. Biomater. Sci. Polymer. Ed., 9, 89, 1998
[26] Miao X Q, Sourirajan S, Lau W W Y. “Production of polyethersulfone hollow fiber ultrafiltration membranes .2. Effects of fiber extrusion pressure (EP) and PVP concentration in the spinning solution”, Separ Sci Technol., 31(3): 327-348, 1996
[27] Wan K T. “Fracture mechanics of a shaft-loaded blister test - Transition from a bending plate to a stretching membrane (vol 70, pg 219,”. J Adhesion, 71(2-3): 337-337, 1999
[28] Nam Y. S., Yoon J. J., Park T. G., “A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foamingsalt as a porogen additive”, J. Biomed. Mater. Res., 53, 1, 2000
[29] Modrzejewska Z, Korus I, Owczarz P. “The effect of seasoning a membrane-forming solution on the separation properties of chitosan membranes”. J Membrane Sci., 181(2): 229-239, 2001
[30] Risbud M V, Hardikar A A, Bhat S V, Bhonde R R. “PH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery”. J Control Release., 68(1): 23-30, 2000
[31]郭佩芸, “幾丁聚醣生物基材及滲透蒸發膜之製備”, 國立台灣大學, 碩士論文, 2002
[32] Flory P. J., Principles of polymer chemistry, Cornell University Press. N.Y., 1953.
[33] Schugens C. H., Maquet V., Grandfils C., Jerome R., Teyssie PH., “Biodegradable and macroporous polylactide implants for cell transplantation: I. Preparation of macroporous polylactide supports by solid-liquid phase separation”, Polymer, 37, 1027, 1996
[34]林永勝, 蒙脫石/高分子複合材料的電化學性質研究”, 國立台灣大學材料科學與工程學系, 碩士論文, 2002
[35]樊其芬, ”以交流阻抗法測定有機塗膜的耐蝕性”, 表面技術雜誌, 139期, pp.81-85.
[36]樊其芬,“用交流阻抗法測鍍膜之性能”, 表面技術雜誌, 140期,pp.90-100.
[37] Fan C. F., ”Analysis of corrosion performance of painted metal using AC impedance”, Journal of Chinese Corrosion Engineering, Vol.7, No.1, p.14~23, 1993.
[38] Ding B., Kim J., Miyazaki Y., Shiratori S., “Electrospun nanofibrous membranes coated quartz crystal microbalance as gas for NH3 detection”, Sensor Actuator B, 101, 373-380, 2004
[39] Shiratori S., Inami Y., Kikuchi M., “Removal of toxic gas by hybrid chemical filter fabricated by the sequential adsorption of polymer”, Thin Solid Films, 393, 243-248, 2001
[40] Bozkurt A., Meyer W. H., Wegner G., “PAA/imidazol-based proton conducting polymer electrolytes”, J Power Sources, 123, 126-131, 2003
[41] Hu Y., Jiang X., Ding Y., Ge H., Yuan Y., Yang C., “Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles”, Biomaterials, 23, 3193-3201, 2002
[42] Yamamoto H., Senoo Y., “Polyion complex fiber and capsule formed by self-assembly of chitosan and gellan at solution interface”, Macromol Chem Physic, 201, 84-92, 2000
[43]邱文英, “幾丁聚醣/丙烯酸共聚體合成與性質研究”, 國立台灣大學化學工程研究所, 碩士論文, 2001, p.45
[44] Keel T. R., Thomson C., Davies M. C., ”AFM studies of crystallization and habit modification of an excipient material, adipic acid” Int J Pharm, 280, 185-198, 2004
[45] Srinivasa R. G., Kumaradhas P., Kulkarni G. U., ”Structural phase transition in adipic acid”, J Solid State Chem,148,12