簡易檢索 / 詳目顯示

研究生: 杜氏懷
Do, Thi Hoai
論文名稱: 鈣鈦礦發光二極體劣化反應機制研究
Degradation reactions in perovskite-based light-emitting diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 143
外文關鍵詞: Perovskite light-emitting diodes, NiOx transporting layer, interfacial redox reaction, cathode degradation, storage stability
ORCID: 0009-0000-5626-4193
ResearchGate: https://orcid.org/0009-0000-5626-4193
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The instability of perovskite light-emitting diodes (PeLEDs) has been widely reported to originate from degradation of the perovskite layer under external electrical stress and environmental exposure, as well as from ion migration, which has been frequently implicated as an important factor influencing device degradation. Nevertheless, additional degradation pathways can occur even in the absence of an external electrical trigger or under conditions with minimal environmental influence. These mechanisms also have a pronounced impact on the electrical characteristics and overall stability of PeLEDs, yet they remain relatively underexplored. This study focuses on such degradation mechanisms, specifically are divided into two topics. The first topic in Chapter 4 focuses on spontaneous interfacial reactions between the perovskite layer and the hole-transporting layer, specifically nickel oxide (NiOx). This chapter discusses how the redox reaction affects the relatively low photoluminescence (PL) observed before the application of bias, as well as the significant electroluminescence (EL) overshoot experienced during electrical excitation. A straightforward approach to address this interfacial redox reaction has also been reported. The second topic in Chapter 5 addresses cathode degradation under relatively inert storage conditions. To mitigate this issue, several strategies are introduced, which significantly improve cathode stability through new cathode configurations. In conclusion, these findings highlight the critical role of interfacial and electrode stability in governing PeLED performance and emphasize the importance of addressing intrinsic degradation processes to advance the long-term stability of PeLEDs.

    Abstract I Acknowledgments II Table of contents IV List of Tables IX List of Figures X List of Acronyms XXI Chapter 1. Introduction 1 1.1 Perovskite light-emitting diodes 1 1.1.1 General information on metal-halide perovskite material 1 1.1.2 Working principle of perovskite light-emitting diodes 4 1.1.3 Hole transporting layers for perovskite light-emitting diodes 6 1.1.3.1 PEDOT:PSS hole transporting layer 6 1.1.3.2 NiOx hole transporting layer 7 1.1.4 Development of perovskite light-emitting diodes 10 1.2 Key challenges in the performance and stability of perovskite light-emitting diodes 12 1.2.1 Efficiency roll-off 12 1.2.2 Formation of luminescence quenching side 13 1.2.3 Limitation in operational lifetime 14 1.3 The motivation and scope of this research 15 Chapter 2. Degradation mechanisms in perovskite light-emitting diodes: a literature review 16 2.1 Degradation mechanisms reported in perovskite light-emitting diodes 16 2.1.1 Environmental stressors 16 2.1.2 Electrical bias-induced degradation in output electronic properties of perovskite light-emitting diodes 18 2.1.3 Electrical bias-induced degradation in the optical properties of perovskite light-emitting diodes 23 2.2 How to suppress bias-induced instability 24 2.2.1 Replacing 3D perovskite with 3D/2D perovskite 24 2.2.2 Passivation of the perovskite 25 2.2.3 Applying the charge transfer molecule 26 2.3 Research rationale 27 Chapter 3. Materials and experimental methods 29 3.1 Selection and preparation of material 29 3.1.1 Materials 29 3.1.2 Photolithography process 31 3.1.3 ITO cleaning process 32 3.2 Fabrication of different components in perovskite light-emitting diodes 33 3.2.1 PEDOT:PSS hole transporting layer 33 3.2.2 NiOx and UVO-treated NiOx hole transporting layer 33 3.2.3 Other hole transporting layer 34 3.2.4 Cathode composition 36 3.2.5 Perovskite emission layer 37 3.2.5.1 Pristine 3D MAPbBr3 perovskite 37 3.2.5.2 Choline chloride passivated MAPbBr3 perovskite 38 3.2.5.3 Quasi-2D PEA2(FAPbBr3)2PbBr4 perovskite 38 3.2.5.4 SYPPY light-emitting diode 38 3.3 Device fabrication 39 3.4 Measurement and characterization method 40 3.5 Summary 43 Chapter 4. Interfacial redox reaction between NiOx and perovskite 45 4.1 Observations of the bias-induced instability 45 4.1.1 Bias-induced photoluminescence 45 4.1.2 Overshoot of electroluminescence 46 4.1.3 Summary 47 4.2 Perovskite film characteristics 48 4.2.1 Surface energy of different hole transporting layers 48 4.2.2 Perovskite film morphology and crystallinity 49 4.3 Device electrical output characteristics 50 4.4 Perovskite and hole-transporting layer interface characteristics 53 4.4.1 XPS of NiOx and perovskite interface 53 4.4.2 XPS of UVO-treated NiOx and perovskite interface 56 4.4.3 XPS of PbI2 thermally deposited on nickel film 57 4.5 Possible mechanism for interfacial redox reaction 57 4.5.1 Proposed mechanism 57 4.5.2 Initial photoluminescence 59 4.5.3 XPS depth profile 60 4.6 Verification 61 4.6.1 Capacitance study for different interface dynamics 61 4.6.2 Trap density of state 63 4.6.3 Bias affecting the interfacial deep-trap distribution 64 4.7 Suppressing the ionic nature in the perovskite emissive layer 66 4.7.1 Applying choline chloride passivation 66 4.7.2 Applying quasi-2D perovskite 69 4.8 Strategies for performance enhancement 71 4.8.1 Function of buffer layer 71 4.8.1.1 Stability of PVK under solvent washing 71 4.8.1.2 Bias induces PL on the different buffer layers 72 4.8.2 Optimization of PVK interlayer concentration 73 4.8.3 Improving injection 75 4.9 Summary of key findings for interfacial redox reaction between NiOx and perovskite 76 Chapter 5. Cathode degradation in relatively inert storage 78 5.1 Observations of the degradation during storage 78 5.1.1 Time-dependent evolution of non-emission electroluminescence pattern 78 5.1.1.1 Influence of external bias application from the measurement 79 5.1.1.2 Device output characteristics during storage 80 5.1.2 Alternating storage conditions 81 5.1.3 Summary 84 5.2 Perovskite film characteristics 84 5.2.1 Perovskite film morphology and crystallinity 84 5.2.2 Photoluminescence and electroluminescence characteristics 86 5.3 Cathode characteristics 86 5.3.1 Morphology of the cathode 86 5.3.2 Chemical properties of the cathode 87 5.3.3 Conductive properties of the cathode 88 5.3.4 New cathode replacement 89 5.3.5 Effect of the hole transporting layer 91 5.4 Mechanism for the formation of non-emission electroluminescence pattern 92 5.5 Proposed viable solution 95 5.5.1 Applying cathode buffer layer 95 5.5.2 Changing perovskite composition 96 5.5.3 Combine cathode buffer and metal cathode replacement 100 5.6 Summary of key findings for cathode degradation in relatively inert storage 103 Conclusion and future work 105 References 107 List of publications 120

    [1] A. Singh, R. Verma, P. Thakur, A. Thakur, F. Wan, Biomedical Applications of Perovskites: The Era of Bio-Piezoelectric Systems, John Wiley & Sons 2024.
    [2] L. Ortega-San-Martin, Revolution of Perovskite, Springer 2020.
    [3] J. Qian, B. Xu, W. Tian, Org. Electron. 2016, 37, 61–73.
    [4] Y. Ye, R. Xu, H.-T. Xu, F. Hong, F. Xu, L.-J. Wang, Chin. Phys. B 2015, 24, 116302.
    [5] W. Chen, S. Zhou, H. Cui, W. Meng, H. Guan, G. Zeng, Y. Ge, S. Cheng, Z. Yu, D. Pu, L. Huang, J. Zhou, G. Chen, G. Li, H. Fang, Z. Yu, H. Zhou, G. Fang, W. Ke, Nat. Commun. 2025, 16, 1894.
    [6] T.-W. Lee, Adv. Mater. 2019, 31, 1905077.
    [7] P. C. Harikesh, B. Febriansyah, R. A. John, N. Mathews, MRS Bull. 2020, 45, 641–648.
    [8] M. Han, Y.-Y. Noh, Phys. Status Solidi A 2021, 218, 2100366.
    [9] K. P. Goetz, A. D. Taylor, F. Paulus, Y. Vaynzof, Adv. Funct. Mater. 2020, 30, 1910004.
    [10] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
    [11] S. H. Cho, Y. Jung, Y.-W. Jang, H. Kim, J. Kim, C. Lim, K.-T. Park, S. Kim, Y. H. Chu, T. Kim, J. Lee, C. Lee, J. Park, K. T. Yoon, D. Eom, S. Park, T. Kim, Y. S. Lee, Int. J. Precis. Eng. Manuf.-Green Technol. 2025, 12, 349–380.
    [12] X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang, J. Yan, Z. Zhang, X. Lu, H. Chen, Adv. Energy Mater. 2018, 8, 1702498.
    [13] X. Lian, L. Zuo, B. Chen, B. Li, H. Wu, S. Shan, G. Wu, X. Yu, Q. Chen, L. Chen, D. Yang, D. Cahen, H. Chen, Energy Environ. Sci. 2022, 15, 2499–2507.
    [14] Y. Li, X. Guan, Y. Zhao, Q. Zhang, X. Chen, S. Zhang, J. Lu, Z. Wei, Adv. Mater. 2025, 37, 2410535.
    [15] J. H. Jang, S. Li, D.-H. Kim, J. Yang, M. K. Choi, Adv. Electron. Mater. 2023, 9, 2201271.
    [16] A. Islam, S. H. U. Shah, Z. Haider, M. Imran, M.-D. Li, Adv. Opt. Mater. 2024, 12, 2303304.
    [17] X. Huang, K. Wang, C. Yi, T. Meng, X. Gong, Adv. Energy Mater. 2015, 6, 1501773.
    [18] M. Vosgueritchian, D. J. Lipomi, Z. Bao, Adv. Funct. Mater. 2011, 22, 421.
    [19] S.-H. Jeong, H. Kim, M.-H. Park, Y. Lee, N. Li, H.-K. Seo, T.-H. Han, S. Ahn, J.-M. Heo, K. S. Kim, T.-W. Lee, Nano Energy 2019, 60, 324.
    [20] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Adv. Funct. Mater. 2011, 21, 1076.
    [21] S. Xing, Y. Yuan, G. Zhang, S. Zhang, Y. Lian, W. Tang, K. Zhou, S. Liu, Y. Gao, Z. Ren, G. Zhang, T. Sun, B. Zhao, D. Di, ACS Energy Lett. 2024, 9, 3643–3651.
    [22] S. Lee, D. B. Kim, I. Hamilton, M. Daboczi, Y. S. Nam, B. R. Lee, B. Zhao, C. H. Jang, R. H. Friend, J. S. Kim, M. H. Song, Adv. Sci. 2018, 5, 1801350.
    [23] B. Li, G. Fu, J. Guan, Y. He, L. Liu, K. Zhang, J. Guo, W. Feng, X. Lü, J. Lumin. 2018, 204, 30–35.
    [24] S. Yuan, B. Han, T. Fang, Q. Shan, J. Song, ACS Appl. Electron. Mater. 2020, 2, 3530–3537.
    [25] S. Zhang, H. Liu, X. Li, S. Wang, Chem. Eng. J. 2021, 403, 126339.
    [26] J. Wang, N. Wang, Y. Jin, J. Si, Z.-K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311–2316.
    [27] W. Wang, Z. Wu, T. Ye, S. Ding, K. Wang, Z. Peng, X. W. Sun, J. Mater. Chem. C 2021, 9, 2115–2122.
    [28] Q. Wang, Y. Chen, C. Yan, X. Zeng, X. Fu, L. Pan, J. Cao, S. Yang, W. Li, X. Chen, W. Yang, ACS Energy Lett. 2023, 8, 3710–3719.
    [29] Y. Meng, X. Wu, Z. Xiong, C. Lin, Z. Xiong, E. Blount, P. Chen, Nanotechnology 2018, 29, 175203.
    [30] Z.-L. Yu, Y.-Q. Zhao, P.-B. He, B. Liu, J.-L. Yang, M.-Q. Cai, J. Phys.: Condens. Matter 2020, 32, 065002.
    [31] Y. Xia, G. Yan, J. Lin, Nanomaterials 2021, 11, 3119.
    [32] X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang, Y. Cheng, R. Wen, L. Ma, F. Yan, Y. Xia, Adv. Sci. 2019, 6, 1900813.
    [33] B. He, T. Liu, B. Wang, Z. Wen, X. Yu, G. Xing, S. Chen, Appl. Surf. Sci. 2022, 585, 152692.
    [34] X. Huang, R. Bäuerle, F. Scherz, J.-N. Tisserant, W. Kowalsky, R. Lovrinčić, G. Hernandez-Sosa, J. Mater. Chem. C 2021, 9, 4344–4350.
    [35] E. Yoon, J. K. Yeon, J. Park, T.-W. Lee, Adv. Mater. Interfaces 2020, 8, 2001712.
    [36] Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S. H. Im, T.-W. Lee, Adv. Mater. 2015, 27, 1248–1254.
    [37] X. Zhang, H. Zhang, Y. Li, S.-u. Zafar, S. Yang, J. Chen, H. Zhou, Y. Zhan, Adv. Funct. Mater. 2022, 32, 2205398.
    [38] K. M. Anoop, T. N. Ahipa, Sol. Energy 2023, 263, 111937.
    [39] S. Wang, S. Wei, H. Yang, L. Zhang, C. Sun, Y. Jiang, M. Yuan, Adv. Sci. 2025, 9, 2402195.
    [40] S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang, F. Ma, Z. Qu, Y. Zhao, X. Chu, X. Zhang, J. You, Science 2023, 382, 1399–1404.
    [41] H. Ji, Z. Ren, R. Chen, C. Luo, X. Zhou, Z. Zheng, H. Shi, Y. Zhang, H. Chen, H. Peng, Y. Chen, Small Struct. 2024, 5, 2400153.
    [42] Z.-L. Yan, H.-Y. Huang, J.-S. Benas, C.-W. Yang, C.-J. Su, F.-C. Liang, W.-C. Chen, H. Tsai, R.-J. Jeng, C.-C. Kuo, Adv. Sci. 2024, 12, 2302358.
    [43] L. Pan, C. Liu, H. Zhu, M. Wan, Y. Li, Y. Mai, Sol. Energy 2020, 196, 521–529.
    [44] M. K. Beisembekov, G. I. Omarbekova, S. K. Tazhibayev, A. K. Aimukhanov, A. S. Baltabekov, A. Z. Ziyat, A. K. Zeinidenov, Opt. Mater. 2024, 151, 115398.
    [45] J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, Y.-J. Hsu, Adv. Mater. 2014, 26, 4107–4113.
    [46] H. Wang, Z. Huang, S. Xiao, X. Meng, Z. Xing, L. Rao, C. Gong, R. Wu, T. Hu, L. Tan, X. Hu, S. Zhang, Y. Chen, J. Mater. Chem. A 2021, 9, 5759–5768.
    [47] Y. Wang, H. Ju, T. Mahmoudi, C. Liu, C. Zhang, S. Wu, Y. Yang, Z. Wang, J. Hu, Y. Cao, F. Guo, Y.-B. Hahn, Y. Mai, Nano Energy 2021, 88, 106285.
    [48] C. C. Boyd, R. C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi, A. Onno, S. Kavadiya, C. Chosy, E. J. Wolf, J. Werner, J. A. Raiford, C. de Paula, A. F. Palmstrom, Z. J. Yu, J. J. Berry, S. F. Bent, Z. C. Holman, J. M. Luther, E. L. Ratcliff, N. R. Armstrong, M. D. McGehee, Joule 2020, 4, 1759–1775.
    [49] T. Wu, L. K. Ono, R. Yoshioka, C. Ding, C. Zhang, S. Mariotti, J. Zhang, K. Mitrofanov, X. Liu, H. Segawa, R. Kabe, L. Han, Y. Qi, Energy Environ. Sci. 2022, 15, 4612–4624.
    [50] J. Zhang, J. Long, Z. Huang, J. Yang, X. Li, R. Dai, W. Sheng, L. Tan, Y. Chen, Chem. Eng. J. 2021, 426, 131357.
    [51] V. V. Ozerova, N. A. Emelianov, L. A. Frolova, Y. S. Fedotov, S. I. Bredikhin, S. M. Aldoshin, P. A. Troshin, Sustain. Energy Fuels 2024, 8, 997–1003.
    [52] D. Wang, Z. Liu, Y. Qiao, Z. Jiang, P. Zhu, J. Zeng, W. Peng, Q. Lian, G. Qu, Y. Xu, Y. Zhang, F. Li, L. Yan, X. Wang, Y.-G. Wang, A. K.-Y. Jen, B. Xu, Joule 2025, 9, 101815.
    [53] M. Era, S. Morimoto, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1994, 65, 676–678.
    [54] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687–692.
    [55] W. Bai, T. Xuan, H. Zhao, H. Dong, X. Cheng, L. Wang, R.-J. Xie, Adv. Mater. 2023, 35, 2302283.
    [56] W. Zhou, Y. Shen, L. X. Cao, Y. Lu, Y.-Y. Tang, K. Zhang, H. Ren, F.-M. Xie, Y. Q. Li, J. X. Tang, Adv. Funct. Mater. 2023, 33, 2301425.
    [57] J. Jiang, Z. Chu, Z. Yin, J. Li, Y. Yang, J. Chen, J. Wu, J. You, X. Zhang, Adv. Mater. 2022, 34, 2204460.
    [58] Y. Xia, Y.-H. Li, Z.-K. Wang, L. S. Liao, Adv. Funct. Mater. 2023, 33, 2303423.
    [59] W. Zou, R. Li, S. Zhang, Y. Liu, N. Wang, Y. Cao, Y. Miao, M. Xu, Q. Guo, D. Di, L. Zhang, C. Yi, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Commun. 2018, 9, 608.
    [60] K. Kim, D. Kang, S. Blumstengel, N. Z. Morales, E. J. W. List-Kratochvil, S. W. Cho, H. Lee, S. Park, Y. Yi, Appl. Phys. Rev. 2023, 10, 041411.
    [61] W. Feng, K. Lin, W. Li, X. Xiao, J. Lu, C. Yan, X. Liu, L. Xie, C. Tian, D. Wu, K. Wang, Z. Wei, J. Mater. Chem. A 2021, 9, 11064–11072.
    [62] C. Ma, M. Ni, X. Liu, K. Zhan, M. Chen, S. Li, F. Li, H. Wang, Y. Dang, CrystEngComm 2025, 27, 3853–3876.
    [63] B. Zhao, B. Guo, S. Xing, Z. Liu, Y. Yuan, Z. Ren, W. Tang, Y. Lian, G. Zhang, C. Zou, D. Di, Matter 2024, 7, 772–793.
    [64] S.-J. Woo, J. S. Kim, T.-W. Lee, Nat. Photonics 2021, 15, 630–634.
    [65] D. G. Zheng, D. H. Kim, Nanophotonics 2022, 12, 451–476.
    [66] C. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. McGehee, Chem. Rev. 2019, 119, 3418–3451.
    [67] I. Deretzis, E. Smecca, G. Mannino, A. La Magna, T. Miyasaka, A. Alberti, J. Phys. Chem. Lett. 2018, 9, 3000.
    [68] L. Kong, X. Zhang, C. Zhang, L. Wang, S. Wang, F. Cao, D. Zhao, A. L. Rogach, X. Yang, Adv. Mater. 2022, 34, 2205217.
    [69] B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, Sci. Rep. 2016, 6, 31896.
    [70] N. K. Kim, Y. H. Min, S. Noh, E. Cho, G. Jeong, M. Joo, S. W. Ahn, J. S. Lee, S. Kim, K. Ihm, H. Ahn, Y. Kang, H. S. Lee, D. Kim, Sci. Rep. 2017, 7, 4645.
    [71] A. Latini, G. Gigli, A. Ciccioli, Sustain. Energy Fuels 2017, 1, 1351–1357.
    [72] J. A. McLeod, L. Liu, J. Phys. Chem. Lett. 2018, 9, 2411.
    [73] A. L. Abdelhady, S. N. Afraj, Y. Haruta, M. M. Uddin, M. I. Saidaminov, ACS Nano 2025, 19, 35276–35305.
    [74] R. Lindblad, N. K. Jena, B. Philippe, J. Oscarsson, D. Bi, A. Lindblad, S. Mandal, B. Pal, D. D. Sarma, O. Karis, H. Siegbahn, E. M. J. Johansson, M. Odelius, H. Rensmo, J. Phys. Chem. C 2015, 119, 1818–1825.
    [75] S. Bae, S. Kim, S.-W. Lee, K. J. Cho, S. Park, S. Lee, Y. Kang, H.-S. Lee, D. Kim, J. Phys. Chem. Lett. 2016, 7, 3091–3096.
    [76] W. Liu, Y. Qiao, Y. Deng, Y. Zhang, C. Liu, W. Guo, Adv. Mater. 2024, e01787.
    [77] V. Prakasam, D. Tordera, H. J. Bolink, G. Gelinck, Adv. Opt. Mater. 2019, 7, 1900902.
    [78] L. Zhang, F. Yuan, J. Xi, B. Jiao, H. Dong, J. Li, Z. Wu, Adv. Funct. Mater. 2020, 30, 2001834.
    [79] E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. Qi, Energy Environ. Sci. 2016, 9, 3406.
    [80] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245.
    [81] Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, Nature 2018, 562, 249.
    [82] L. Zhao, J. Gao, Y. L. Lin, Y. W. Yeh, K. M. Lee, N. Yao, Y. L. Loo, B. P. Rand, Adv. Mater. 2017, 29, 1605317.
    [83] R. Gegevičius, I. Ledzinskas, J. Chmeliov, I. Goldberg, R. Gehlhaar, K. Elkhouly, V. Gulbinas, Adv. Photonics Res. 2025, e202500190.
    [84] C. Zou, Y. Liu, D. S. Ginger, L. Y. Lin, ACS Nano 2020, 14, 6076–6086.
    [85] L. Zhang, Y. Jiang, Y. Feng, M. Cui, S. Li, X. Fu, H.-Y. Hsu, C. Qin, M. Yuan, Angew. Chem. Int. Ed. 2023, 62, e202302184.
    [86] Y. Shen, Y.-Q. Li, K. Zhang, L.-J. Zhang, F.-M. Xie, L. Chen, X.-Y. Cai, Y. Lu, H. Ren, X. Gao, H. Xie, H. Mao, S. Kera, J.-X. Tang, Adv. Mater. 2022, 32, 2206574.
    [87] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193.
    [88] H. Wang, Z. Chen, J. Hu, H. Yu, C. Kuang, J. Qin, X. Liu, Y. Lu, M. Fahlman, L. Hou, X.-K. Liu, F. Gao, Adv. Funct. Mater. 2021, 31, 2007596.
    [89] Z. Andaji-Garmaroudi, M. Abdi-Jalebi, F. U. Kosasih, T. Doherty, S. Macpherson, A. R. Bowman, G. J. Man, U. B. Cappel, H. Rensmo, C. Ducati, R. H. Friend, S. D. Stranks, Adv. Energy Mater. 2020, 10, 2002676.
    [90] P. Vashishtha, J. E. Halpert, Chem. Mater. 2017, 29, 5965.
    [91] H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, Nat. Commun. 2019, 10, 1088.
    [92] M. F. Prodanov, V. V. Vashchenko, A. K. Srivastava, Nanophotonics 2021, 10, 1801.
    [93] S. Yuan, X. Zheng, W.-S. Shen, J. Liu, L.-S. Cui, C. Zhang, Q.-S. Tian, J.-J. Wu, Y.-H. Zhou, X.-D. Wang, Z.-K. Wang, P. Han, J. M. Luther, O. M. Bakr, L.-S. Liao, ACS Energy Lett. 2022, 7, 1348.
    [94] T. Cheng, G. Tumen-Ulzii, D. Klotz, S. Watanabe, T. Matsushima, C. Adachi, ACS Appl. Mater. Interfaces 2020, 12, 33004.
    [95] N. Li, L. Song, Y. Jia, Y. Dong, F. Xie, L. Wang, S. Tao, N. Zhao, Adv. Mater. 2020, 32, 1907786.
    [96] J. H. Warby, B. Wenger, A. J. Ramadan, R. D. J. Oliver, H. C. Sansom, A. R. Marshall, H. J. Snaith, ACS Nano 2020, 14, 8855.
    [97] S. Lee, J. H. Park, B. R. Lee, E. D. Jung, J. C. Yu, D. Di Nuzzo, R. H. Friend, M. H. Song, J. Phys. Chem. Lett. 2017, 8, 1784.
    [98] H. Back, G. Kim, J. Kim, J. Kong, T. K. Kim, H. Kang, H. Kim, J. Lee, S. Lee, K. Lee, Energy Environ. Sci. 2016, 9, 1258.
    [99] C. Besleaga, L. E. Abramiuc, V. Stancu, A. G. Tomulescu, M. Sima, L. Trinca, N. Plugaru, L. Pintilie, G. A. Nemnes, M. Iliescu, H. G. Svavarsson, A. Manolescu, I. Pintilie, J. Phys. Chem. Lett. 2016, 7, 5168.
    [100] Y. Luo, P. Khoram, S. Brittman, Z. Zhu, B. Lai, S. P. Ong, E. C. Garnett, D. P. Fenning, Adv. Mater. 2017, 29, 1703451.
    [101] H. Kim, J. S. Kim, J.-M. Heo, M. Pei, I.-H. Park, Z. Liu, H. J. Yun, M.-H. Park, S.-H. Jeong, Y.-H. Kim, J.-W. Park, E. Oveisi, S. Nagane, A. Sadhanala, L. Zhang, J. J. Kweon, S. K. Lee, H. Yang, H. M. Jang, R. H. Friend, K. P. Loh, M. K. Nazeeruddin, N.-G. Park, T.-W. Lee, Nat. Commun. 2020, 11, 3378.
    [102] M. K. Abney, M. Suri, T. Shah, F. L. Deepak, B. A. Korgel, J. Phys. Chem. C 2022, 126, 12712–12720.
    [103] T.-L. Shen, A. Loganathan, T.-H. Do, C.-M. Wu, Y.-T. Chen, Z.-J. Chen, N.-C. Chiu, C.-H. Shih, H.-C. Wang, J.-H. Chou, Y.-Y. Hsu, C.-C. Liu, Y.-C. Chang, Y.-S. Fu, W.-C. Lai, P. Chen, T.-C. Wen, T.-F. Guo, Adv. Opt. Mater. 2022, 10, 2101439.
    [104] A. Garcia, G. C. Welch, E. L. Ratcliff, D. S. Ginley, G. C. Bazan, D. C. Olson, Adv. Mater. 2012, 24, 5368–5373.
    [105] J. Mangalam, T. Rath, S. Weber, B. Kunert, T. Dimopoulos, A. Fian, G. Trimmel, J. Mater. Sci.: Mater. Electron. 2019, 30, 9602–9611.
    [106] T. Tsujimura, OLED Display Fundamentals and Applications, 2nd Ed., Wiley 2017.
    [107] B. Nikoobakht, R. P. Hansen, Y. Zong, A. Agrawal, M. Shur, J. Tersoff, Sci. Adv. 2020, 6, 4346.
    [108] J. S. Yun, J. Seidel, J. Kim, A. M. Soufiani, S. Huang, J. Lau, N. J. Jeon, S. I. Seok, M. A. Green, A. Ho-Baillie, Adv. Energy Mater. 2016, 6, 1600330.
    [109] V. S. Menon, S. Ganesan, R. K. Raman, A. Alagumalai, A. Krishnamoorthy, Dalton Trans. 2024, 53, 781.
    [110] X. Yu, C. Liu, C. Li, C. Wang, Y. Li, L. Liang, W. Yu, Y. Wang, C. Liu, Y. Liu, G. Yang, W. Fu, Q. Zhou, S.-Y. Lien, Y. Wang, P. Gao, ACS Appl. Mater. Interfaces 2024, 16, 31114.
    [111] Y. Tong, Y. Zhang, H. Wang, H. Qi, P. Yan, W. Li, H. Li, H. Wang, K. Wang, H. Wang, ACS Appl. Opt. Mater. 2023, 1, 1387.
    [112] A. Itzhak, X. He, A. Kama, S. Kumar, M. Ejgenberg, A. Kahn, D. Cahen, ACS Appl. Mater. Interfaces 2022, 14, 47587.
    [113] H.-J. Seok, J.-H. Park, A. Yi, H. Lee, J. Kang, H. J. Kim, H.-K. Kim, ACS Appl. Energy Mater. 2021, 4, 5452.
    [114] M. He, A. I. Chernov, E. D. Obraztsova, J. Sainio, E. Rikkinen, H. Jiang, Z. Zhu, A. Kaskela, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, O. Krause, Nano Res. 2011, 4, 334.
    [115] Y. S. Chen, J. F. Kang, B. Chen, B. Gao, L. F. Liu, X. Y. Liu, Y. Y. Wang, L. Wu, H. Y. Yu, J. Y. Wang, Q. Chen, E. G. Wang, J. Phys. D: Appl. Phys. 2012, 45, 065303.
    [116] J. Kim, D. Pyun, D. Choi, S.-H. Jeong, C. Lee, J. Hyun, H. E. Lee, S.-W. Lee, H. Song, S. Lee, D. Kim, Y. Kang, H.-S. Lee, Energies 2022, 15, 870.
    [117] J. Zhou, Y. Zhang, S. Li, J. Chen, Catalysts 2019, 9, 944.
    [118] P. Nandi, H. Park, S. Shin, J.-W. Lee, J. Y. Kim, M. J. Ko, H. S. Jung, N.-G. Park, H. Shin, Adv. Mater. Interfaces 2024, 11, 2300751.
    [119] A. Ray, B. Martín-García, M. Prato, A. Moliterni, S. Bordignon, D. Spirito, S. Marras, L. Goldoni, K. M. Boopathi, F. Moro, N. P. M. Casati, C. Giacobbe, M. I. Saidaminov, C. Giannini, M. R. Chierotti, R. Krahne, L. Manna, A. L. Abdelhady, ACS Appl. Mater. Interfaces 2023, 15, 28166.
    [120] Z. Peng, A. Vincze, F. Streller, V. M. Le Corre, K. Zhang, C. Li, J. Tian, C. Liu, J. Luo, Y. Zhao, A. Späth, R. Fink, T. Heumüller, A. Osvet, N. Li, M. Stolterfoht, L. Lüer, C. J. Brabec, Energy Environ. Sci. 2024, 17, 8313.
    [121] D.-H. Kwak, S.-B. Cho, C.-X. Li, Y.-N. Choi, I.-K. Park, Adv. Funct. Mater. 2025, 35, 2422368.
    [122] G. Armaroli, L. Ferlauto, F. Lédée, M. Lini, A. Ciavatti, A. Kovtun, F. Borgatti, G. Calabrese, S. Milita, B. Fraboni, D. Cavalcoli, ACS Appl. Mater. Interfaces 2021, 13, 58301.
    [123] R. Islam, G. Chen, P. Ramesh, J. Suh, N. Fuchigami, D. Lee, K. A. Littau, K. Weiner, R. T. Collins, K. C. Saraswat, ACS Appl. Mater. Interfaces 2017, 9, 17201–17207.
    [124] G. Milazzo, V. K. Sharma, Tables of Standard Electrode Potentials, Wiley 1978.
    [125] H. Uratani, K. Yamashita, J. Phys. Chem. Lett. 2017, 8, 742.
    [126] J. Hu, R. A. Kerner, I. Pelczer, B. P. Rand, J. Schwartz, ACS Energy Lett. 2021, 6, 2262.
    [127] R. A. Kerner, T. H. Schloemer, P. Schulz, J. J. Berry, J. Schwartz, A. Sellinger, B. P. Rand, J. Mater. Chem. C 2019, 7, 5251.
    [128] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222–1225.
    [129] V. Shrotriya, Y. Yang, J. Appl. Phys. 2005, 97, 054504.
    [130] Y.-H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park, Y.-H. Lee, H. Xu, S. Nagane, R. B. Wexler, D.-H. Kim, S. H. Jo, L. Martínez-Sarti, P. Tan, A. Sadhanala, G.-S. Park, Y.-W. Kim, B. Hu, H. J. Bolink, S. Yoo, R. H. Friend, A. M. Rappe, T.-W. Lee, Nat. Photonics 2021, 15, 148.
    [131] M.-Y. Hao, H.-Y. Wang, Y. Wang, Y. Qin, J.-P. Zhang, X.-C. Ai, J. Power Sources 2020, 479, 229077.
    [132] K. Kearney, G. Seo, T. Matsushima, C. Adachi, E. Ertekin, A. Rockett, J. Am. Chem. Soc. 2018, 140, 15735.
    [133] H. Jin, E. Debroye, M. Keshavarz, I. G. Scheblykin, M. B. J. Roeffaers, J. Hofkens, J. A. Steele, Mater. Horiz. 2020, 7, 397.
    [134] T. Li, Y. Gao, Y. Wu, M. Lu, J. Hu, Y. Zhang, Z. Wu, X. Bai, F. Yan, Adv. Opt. Mater. 2024, 12, 2302053.
    [135] P.-E. Jan, H.-C. Liang, R.-W. Cheng, C. R. Greve, Y.-T. Chuang, Y.-L. Chiu, G.-H. Tan, M. M. Elsenety, C.-L. Chang, D. M. Dorrah, H.-L. Lai, P.-W. Chiu, S.-Y. Sun, Y.-L. Li, E. M. Herzig, H.-H. Chou, H.-W. Lin, Adv. Funct. Mater. 2025, 35, 2408323.
    [136] Y.-K. Chih, J.-C. Wang, R.-T. Yang, C.-C. Liu, Y.-C. Chang, Y.-S. Fu, W.-C. Lai, P. Chen, T.-C. Wen, Y.-C. Huang, C.-S. Tsao, T.-F. Guo, Adv. Mater. 2016, 28, 8687.
    [137] X. Xiao, K. Wang, T. Ye, R. Cai, Z. Ren, D. Wu, X. Qu, J. Sun, S. Ding, X. W. Sun, W. C. H. Choy, Commun. Mater. 2020, 1, 81.
    [138] L. Shi, M. P. Bucknall, T. L. Young, M. Zhang, L. Hu, J. M. Bing, D. S. Lee, J. Kim, T. Wu, N. Takamure, D. R. McKenzie, S. Huang, M. A. Green, A. W. Y. Ho-Baillie, Science 2020, 368, 1328.
    [139] J. S. Yun, J. Kim, T. Young, R. J. Patterson, D. Kim, J. Seidel, S. Lim, M. A. Green, S. Huang, A. Ho-Baillie, Adv. Funct. Mater. 2018, 28, 1705363.
    [140] N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, S. A. Haque, Nat. Commun. 2017, 8, 15218.
    [141] Q. Su, Y. Sun, H. Zhang, S. Chen, Adv. Sci. 2018, 5, 1800549.
    [142] K. P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarza, P. H. Holloway, Nanoscale 2017, 9, 14451.
    [143] N. Li, Y. Lv, L. Wang, J. Li, Y. He, J. Fan, H. Xing, H. Shen, X. Zhang, L. S. Li, ACS Photonics 2023, 10, 2720.
    [144] Z. Hu, S. Liu, H. Qin, J. Zhou, X. Peng, J. Am. Chem. Soc. 2020, 142, 4254.
    [145] Y. Zheng, X. Lin, J. Li, J. Chen, W. Wu, Z. Song, Y. Gao, Z. Hu, H. Wang, Z. Ye, H. Qin, X. Peng, Nat. Commun. 2025, 16, 3362.
    [146] Z. Chen, S. Chen, Adv. Mater. 2025, 37, 2503477.
    [147] H. Lee, D. Ko, C. Lee, ACS Appl. Mater. Interfaces 2019, 11, 11667.
    [148] J. Li, Q. Dong, N. Li, L. Wang, Adv. Energy Mater. 2017, 7, 1602922.
    [149] Z. A. Umar, R. Ahmad, R. S. Rawat, M. A. Baig, J. Siddiqui, T. Hussain, Chin. Phys. B 2016, 25, 075201.
    [150] J. Taborda, H. Landázuri, L. Londoño, IEEE Sens. J. 2016, 15, 1558.
    [151] N. A. Vinogradov, K. A. Simonov, A. A. Zakharov, J. W. Wells, A. V. Generalov, A. S. Vinogradov, N. Mårtensson, A. B. Preobrajenski, Appl. Phys. Lett. 2013, 102, 061601.
    [152] W. C. Huang, T. F. Lei, C. L. Lee, J. Electrochem. Soc. 1997, 144, 627.
    [153] Y. Yao, D. D. Klug, J. Chem. Phys. 2013, 138, 094501.
    [154] H. Oikawa, R. Akiyama, K. Kanazawa, S. Kuroda, I. Harayama, K. Nagashima, D. Sekiba, Y. Ashizawa, A. Tsukamoto, K. Nakagawa, N. Ota, Thin Solid Films 2015, 574, 110.
    [155] Y. Guo, L. Huang, C. Wang, S. Liu, J. Huang, X. Liu, J. Zhang, Z. Hu, Y. Zhu, Small Methods 2023, 7, 2300377.
    [156] P. Chen, Y. Bai, S. Wang, M. Lyu, J.-H. Yun, L. Wang, Adv. Funct. Mater. 2018, 28, 1706923.
    [157] J. Schlipf, Y. Hu, S. Pratap, L. Bießmann, N. Hohn, L. Porcar, T. Bein, P. Docampo, P. Müller-Buschbaum, ACS Appl. Energy Mater. 2019, 2, 1011.
    [158] J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy Environ. Sci. 2015, 8, 2118.
    [159] W. Wang, X. Wang, B. Zhang, Y. Guo, Q. Xu, Phys. B: Condens. Matter. 2020, 593, 412310.
    [160] J. Li, M. Bouchard, P. Reiss, D. Aldakov, S. Pouget, R. Demadrille, C. Aumaitre, B. Frick, D. Djurado, M. Rossi, P. Rinke, J. Phys. Chem. Lett. 2018, 9, 3969.
    [161] M. A. Najeeb, Z. Ahmad, R. A. Shakoor, A. Alashraf, J. Bhadra, N. J. Al-Thani, S. A. Al-Muhtaseb, A. M. A. Mohamed, Opt. Mater. 2017, 73, 50.
    [162] Y.-H. Chiang, C.-K. Shih, A.-S. Sie, M.-H. Li, C.-C. Peng, P.-S. Shen, Y.-P. Wang, T.-F. Guo, P. Chen, J. Mater. Chem. A 2017, 5, 25485.
    [163] Y.-H. Chiang, C.-C. Peng, Y.-H. Chen, Y.-L. Tung, S.-Y. Tsai, P. Chen, J. Phys. D: Appl. Phys. 2018, 51, 424002.

    QR CODE