簡易檢索 / 詳目顯示

研究生: 江曜廷
Chiang, Yao-Ting
論文名稱: 以低程式碼系統和AHP-FMEA開發雲端設備管理系統
Development of a Cloud-Based Equipment Management System Using Both Low-Code System and AHP-FMEA
指導教授: 楊大和
Yang, Ta-ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 146
中文關鍵詞: 資訊流圖自働生產管理環低程式碼平台層級分析法失效模式與影響分析
外文關鍵詞: Information Stream Mapping, Jidoka-JIT Cycle, Low-Code Platform, Analytic Hierarchy Process, Failure Mode and Effects Analysis
相關次數: 點閱:32下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製藥業的設備管理因其高度監管特性,必須在符合法規與追求效率間取得平衡,一方面須嚴守法規標準以確保藥品安全及品質;另一方面需提升企業營運效率以維持市場競爭力。然而,在現行管理架構中,傳統作業模式如紙本記錄和分散的資訊系統,導致資訊孤島、作業效率降低、數據追溯性不足,成為數位轉型的阻力。
    本研究以一間製藥公司為本研究之案例公司。在研究方法上,首先根據資訊流圖分析現行設備維修與保養流程,識別資訊浪費與瓶頸。接著,採用低程式碼開發平台與雲端的軟體即服務之理念,建構一套雲端設備管理系統,其核心在於整合自働生產管理環(Jidoka-JIT Cycle, JJC)之理念,融合企業內部既有工具與外部雲端平台,透過雲端技術提升數據處理效率,並使用如Power Apps與Power BI等工具,降低數位化門檻,促進員工參與流程改善,實現數據集中管理、流程自動化與視覺化監控。最後本研究整合層級分析法(Analytic Hierarchy Process , AHP)與失效模式與影響分析(Failure Mode and Effects Analysis, FMEA),透過數據驅動的局部權重計算,克服傳統風險優先數(Risk Priority Number, RPN)的限制,更客觀地進行風險排序。
    實證分析結果表示,導入低程式碼雲端系統後,設備異常通報時間縮短90%,追蹤時間縮短99%。半年內,設備可動率提升至98.6%(提升4.2%),平均停機時間下降46.6%,異常數量減少69.23%。AHP-FMEA風險評估方法相較傳統FMEA產生統計上極顯著的差異排序,提高風險鑑別度,並能識別累積性風險。
    本研究的主要貢獻在於:一、提供整合低程式碼平台、雲端技術、精實管理與AHP-FMEA的製藥業設備管理解決方案;二、驗證低程式碼工具在受規範環境下快速開發客製化系統的可行性與效益;三、提出並實證改良的AHP-FMEA方法能更精準進行風險評估優化資源配置;四、量化數位轉型在提升營運效率與設備績效上的具體成果。

    Equipment management in the pharmaceutical industry, due to its highly regulated nature, must strike a balance between regulatory compliance and the pursuit of efficiency. On one hand, it must strictly adhere to regulatory standards to ensure drug safety and quality; on the other hand, it needs to enhance operational efficiency to maintain market competitiveness. However, within the current management framework, traditional operational modes such as paper-based records and dispersed information systems lead to information silos, reduced operational efficiency, and insufficient data traceability, becoming obstacles to digital transformation.
    This research focuses on a case study of a pharmaceutical company. In terms of methodology, current equipment maintenance and repair processes were first analyzed using information flow diagrams to identify information waste and bottlenecks. Subsequently, a cloud-based equipment management system was developed using a low-code development platform and cloud Software-as-a-Service (SaaS) principles. Its core lies in integrating the Jidoka-JIT Cycle (JJC) philosophy, merging the company's existing internal tools with external cloud platforms. Cloud technology enhances data processing efficiency, and tools such as Power Apps and Power BI are used to lower digitalization barriers, promote employee participation in process improvement, and achieve centralized data management, process automation, and visual monitoring. Finally, to enhance the accuracy of risk assessment, this study integrates the Analytic Hierarchy Process (AHP) with Failure Mode and Effects Analysis (FMEA), employing data-driven local weight calculations to overcome the limitations of traditional RPN methods and rank risks more objectively.
    Empirical analysis results indicate that after the implementation of the low-code cloud system, equipment abnormality reporting time was shortened by 90%, and tracking time by 99%. Within six months, equipment availability increased to 98.6% (an improvement of 4.2%), average downtime decreased by 46.6%, and the number of abnormalities was reduced by 69.23%. The AHP-FMEA risk assessment method, compared to traditional FMEA, produced statistically highly significant differences in risk ranking, improved risk differentiation, and enabled the identification of cumulative risks.

    The main contributions of this research are: 1. Providing a pharmaceutical equipment management solution that integrates low-code platforms, cloud technology, Lean Management, and AHP-FMEA. 2. Validating the feasibility and benefits of using low-code tools for the rapid development of customized systems in a regulated environment. 3. Proposing and empirically validating an improved AHP-FMEA method for more accurate risk assessment and optimized resource allocation. 4. Quantifying the concrete outcomes of digital transformation in enhancing operational efficiency and equipment performance.

    目錄 ix 表目錄 xii 圖目錄 xiv 1 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究流程 6 1.4 研究架構 6 2 文獻探討 7 2.1 製藥設備維修管理與分析 7 2.2 數位轉型 8 2.2.1 自働化生產管理環 11 2.2.2 數位精實管理之整合與應用 13 2.3 智慧維修 16 2.4 低程式碼開發平台 17 2.4.1 軟體即服務之優勢 18 2.4.2 實踐雲端低程式碼平台與技術 20 2.5 Microsoft Power Platform 22 2.5.1 Microsoft Dataverse 23 2.5.2 Microsoft Power Apps 24 2.5.3 Microsoft Power Automate 25 2.5.4 Microsoft Power BI 26 2.5.5 Microsoft Power Pages 27 2.6 失效模式與影響分析與層級分析法 28 2.6.1 FMEA發展與製藥領域的應用 28 2.6.2 AHP-FMEA整合應用 29 2.7 小結 32 3 研究方法 34 3.1 Information Stream Mapping 35 3.2 基於SaaS的雲端設備管理系統 38 3.2.1 雲端設備管理平台架構 39 3.2.2 資料收集及前處理 40 3.2.3 雲端設備管理APP架構 44 3.2.4 雲端設備管理自動化流程 47 3.2.5 雲端設備管理指標分析架構 50 3.3 AHP-FMEA分析 53 3.3.1 進行製藥流程FMEA 53 3.3.2 AHP -FMEA步驟說明 55 4 產業背景與案例說明 58 4.1 製藥產業背景 58 4.2 案例公司背景 60 4.3 案例公司現況分析 61 4.3.1設備管理現況資訊流圖66 61 4.3.2問題描述 66 4.3.3案例雲端設備管理系統 68 5 實證分析 69 5.1 基於SaaS雲端設備管理系統實踐 69 5.1.1 系統運作流程 69 5.1.2 系統資料前處理 71 5.1.3 系統功能介紹 73 5.1.4 自動化流程說明 75 5.1.5 系統面實證績效 77 5.2 資訊流圖效益說明 83 5.2.1 資訊流圖績效指標說明 83 5.2.2 資訊流圖改善評估 84 5.3 AHP-FMEA風險評估模型之應用 91 5.3.1 資料收集與風險評估指標建構 92 5.3.2 AHP-FMEA整合模型之實施與計算 95 5.3.3 傳統RPN值與AHP-FMEA整合方法之風險排序比較分析 102 5.3.4 風險視覺化管理系統建置 111 5.3.5 實驗小結 113 6 結論與建議 115 6.1 研究結論 115 6.2 未來建議 117 參考文獻 118 附錄A-設備管理系統操作圖解 123

    王歆彤(2024),生物科技產業微生物發酵之製造排程與設備管理數位轉型之研究,國立成功大學製造資訊與系統研究所碩士論文,台南。
    江曜廷、楊大和、陳偉欽、林佩儀、王天保(2024 年11 月)。基於SaaS的即時設備維修管理系統。「2024中國工業工程學術年會暨學術研討會」,國立台北科技大學,台北。
    楊大和、李兆華(2021),數位轉型是持續改善的過程—自働生產管理環為例,工業工程雜誌,取自: https://sites.google.com/ciie.org.tw/column220901(2025/3/26取得)
    楊大和,2024,數位與精實的融合-簡易智慧化,「2024年精實企業-數位與精實融合」論壇,經濟部產業發展署,2024年10月22日,裕元花園酒店,台中。
    資誠(PwC Taiwan)(2024),《2024 臺灣企業轉型現況及需求調查》,https://www.pwc.tw/zh/publications/topic-report/sme-digitalisation-survey.html (2025/3/27取得)
    劉偉(2023),「現代製藥設備維修與管理分析」,《工程管理與技術探討》,5(10),133-135。
    Amajuoyi, C. P., Nwobodo, L. K., & Adegbola, M. D. (2024). Transforming business scalability and operational flexibility with advanced cloud computing technologies. Computer Science & IT Research Journal, 5(6), 1469-1487.
    Beranic, T., Rek, P., & Hericko, M. (2020). Adoption and usability of low-code/no-code development tools. In Central European Conference on Information and Intelligent Systems (pp. 97-103). Faculty of Organization and Informatics Varazdin
    Borra, P. (2024). The evolution and impact of google cloud platform in machine learning and AI, Available:https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4914163 (2025/3/26取得)
    Chiarini, A., & Gabberi, P. (2022). Comparing the VSM and Makigami tools in a transactional office environment: exploratory research from an Italian manufacturing company. Total Quality Management & Business Excellence, 33(1-2), 127-145.
    Chui, M., Evers, M., Manyika, J., Zheng, A., & Nisbet, T. (2023). The bio revolution: Innovations transforming economies, societies, and our lives. In Augmented Education in the Global Age (pp. 48-74). Routledge.
    Ciucan-Rusu, L., Timus, M., Stefan, D., Comes, C. A., Bunduchi, E., & Poptamas, M. A. (2023). Low-code solutions integration for digital process automation-application in management. In 2023 22nd RoEduNet Conference: Networking in Education and Research (RoEduNet) (pp. 1-5). IEEE.
    De Silva, D. I., Shangavie, R., & Ranathunga, R. A. A. L. (2024, January). Role of Quality Assurance in Low-Code/No-Code Projects. In 2024 International Conference on Information Networking (ICOIN) (pp. 789-794). IEEE.
    Dewangan, D. N., Jha, M. K., & Banjare, Y. P. (2014). Reliability investigation of steam turbine used in thermal power plant. International Journal of Innovative Research in Science, Engineering and Technology, 3(7), 14915-14923.
    Dewarani, G., & Alversia, Y. (2023). The influence of customer involvement and engagement on co-creation of services, satisfaction, and loyalty: The case of Software as a Service. Innovative Marketing, 19(2), 27.
    Fadeev, S. V. (2024). Lean Manufacturing Tools as a Driver of the Company’s Digital Transformation. Journal of Volgograd State University. Economics, 26(2), 147-157.
    Gartner. 2024. Information Technology Glossary: Citizen Developer. Available: https://www.gartner.com/en/information-technology/glossary/citizen-developer (2024/3/27取得)
    Golovin, D. (2017). Outsystems as a rapid application development platform for mobile and web applications. Available: https://www.theseus.fi/handle/10024/132267 (2024/3/27取得)
    Hong, D. Y., Teck, S. K., Ming, L. T., & Jack, C. H. (2023). Customizing of ERP In Microservice SaaS Architecture: An Overview of Intrusive & Non-Intrusive Approach. In 2023 IEEE 8th International Conference On Software Engineering and Computer Systems (ICSECS) (pp. 134-138). IEEE.
    Isoko, K., Cordiner, J. L., Kis, Z., & Moghadam, P. Z. (2024). Bioprocessing 4.0: a pragmatic review and future perspectives. Digital Discovery, 3(9), 1662-1681.
    Jeong, B. K., Ji, S. Y., & Jeong, D. H. (2022). Lean IT With Value Stream Mapping Analysis: A Case Study in Software Development Life Cycle Process. Information Resources Management Journal (IRMJ), 35(1), 1-18.
    Jonathan, R. (2023). Development of Front-End Web Applications Utilizing Single Page Application Framework and React. js Library. International Journal Software Engineering and Computer Science (IJSECS), 3(3), 529-536.
    Käss, S., Strahringer, S., & Westner, M. (2023). Practitioners’ perceptions on the adoption of low code development platforms. IEEE access, 11, 29009-29034.
    Kesik‐Brodacka, M. (2018). Progress in biopharmaceutical development. Biotechnology and applied biochemistry, 65(3), 306-322.
    Kolberg, D., & Zühlke, D. (2015). Lean automation enabled by industry 4.0 technologies. IFAC-PapersOnLine, 48(3), 1870-1875.
    Krejčí, J., & Stoklasa, J. (2018). Aggregation in the analytic hierarchy process: Why weighted geometric mean should be used instead of weighted arithmetic mean. Expert Systems with Applications, 114, 97-106.
    Kudumala, Aditya & Miranda, Wendell (2020), Scaling up AI across the life sciences value chain: Enhancing R&D, creating efficiencies, and increasing impact, Deloitte Insights. Available:https://www2.deloitte.com/insights/us/en/industry/life-sciences/ai-in-life-sciences.html(2025/3/26取得)
    Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert systems with applications, 39(1), 61-67.
    Li, H., Díaz, H., & Soares, C. G. (2021). A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean Engineering, 234(15), 109261.
    Liang, H. C., Chang, H. L., Kuo, H. Y., & Tu, M. H. (2024). Applying Microsoft Power Platform to Improve Healthcare Worker Health Monitoring Processes. In Innovation in Applied Nursing Informatics (pp. 689-690). IOS Press.
    Litman, M., & Field, D. (2018). “Mendix as a solution for present gaps in Computer Programming in Higher Education, ” The Americas Conference on Information Systems, Aug. 16-18, New Orleans, USA.
    Liker, J., Frank, J., Li, J., & Khan, Y., 2024, Lean and Digital Manufacturing: Putting People at the Center, Available: https://kcftech.com/lean-and-digital-manufacturing/ (2024/3/27取得)
    Liu, H. C., Liu, L., Liu, N., & Mao, L. X. (2012). Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934.
    Mell, P. (2011). The NIST Definition of Cloud Computing. Available: https://doi.org/10.6028/NIST.SP.800-145(2025/3/27取得)
    Mikulak, R. J. (2017). The basics of FMEA. CRC press.
    Microsoft, 2024 Microsoft Power Platform, Available: https://www.microsoft.com/zh-tw/power-platform (2025/2/21取得).
    Microsoft, 2024a, What is Dataverse ?, Available: https://learn.microsoft.com/zh-tw/power-apps/maker/data-platform/data-platform-intro (2025/2/21取得)
    Microsoft, 2024b, What is Power Apps ?, Available: https://learn.microsoft.com/en-us/power-apps/powerapps-overview (2025/2/21取得)
    Microsoft, 2024c, Power Automate, Available: https://www.microsoft.com/zh-tw/power-platform/products/power-automate (2025/2/21取得)
    Microsoft, 2024d, What is Power BI ?, Available: https://learn.microsoft.com/en-us/power-bi/fundamentals/power-bi-overview (2023/2/21取得)
    Microsoft, 2025, Formula Reference - Canvas app, Available: https://learn.microsoft.com/zh-tw/power-platform/power-fx/formula-reference-canvas-apps (2025/2/21取得)
    Milošević, I. M., Arsić, S., Glogovac, M., Rakić, A., & Ruso, J. (2022). Industry 4.0: Limitation or benefit for success?. Serbian Journal of Management, 17(1), 85-98.
    Mohad, F.T., L.d.C. Gomes, G.d.L. Tortorella, and F.H. Lermen (2025), “Operational excellence in total productive maintenance: statistical reliability as support for planned maintenance pillar,” International Journal of Quality & Reliability Management, 42(4), p1274-1296.
    Nasirinejad, M., Afshari, H., & Sampalli, S. (2024). Challenges and Solutions to Adopt Smart Maintenance in SMEs: A Literature Review and Research Agenda. IFAC-PapersOnLine, 58(19), 917-922.
    Nieminen, M. P., Tyllinen, M., and Runonen, M. (2013). “Digital war room for design: requirements for collocated group work spaces,” 15th International Conference, HCI International 2013, Jul. 21-26, Las Vegas, USA.
    Nowlan, F. S., & Heap, H. F. (1978). Reliability-centered maintenance, New York, USA.
    Pardeshi, S. R., Deshmukh, N. S., Telange, D. R., Nangare, S. N., Sonar, Y. Y., Lakade, S. H., ... & More, M. P. (2023). Process development and quality attributes for the freeze-drying process in pharmaceuticals, Future Journal of Pharmaceutical Sciences, 9(1), 99.
    Precedence Research. (2024). Biopharmaceutical market size, share, growth, trends and forecast 2024–2033. Precedence Research, Available: https://www.precedenceresearch.com/biopharmaceutical-market (2025/2/21取得)
    Rauen, H., Mosch, C., & Prumbohm, F. (2018). Industrie 4.0 meets Lean, VDMA, Frankfurt, Germany.
    Rao, N., Tsay, J., Kate, K., Hellendoorn, V., and Hirzel, M. (2024). “AI for Low-Code for AI,” 29th International Conference on Intelligent User Interfaces, Mar. 18-21, Greenville, USA.
    Richardson, C. (2021). The Forrester Wave™: Robotic Process Automation, Available: https://10xds.com/news/forrester-wave-rpa-q1-2021/ (2025/2/21取得)
    Richardson, C., Rymer, J. R., Mines, C., Cullen, A., and Whittaker, D. (2014), New development platforms emerge for customer-facing applications, Cambridge, USA.
    Rizvi, Q. M., Ansari, T., & Siddiqui, O. (2024). Comparative analysis of SaaS, IaaS, and PaaS: Exploring the cloud computing paradigm. International Journal of Innovative Research in Computer Science & Technology (IJIRCST), 12(Special Issue-1), 89–95.
    Roh, P., Kunz, A., & Wegener, K. (2019). Information stream mapping: Mapping, analysing and improving the efficiency of information streams in manufacturing value streams. CIRP Journal of Manufacturing Science and Technology, 25, 1-13.
    Saarinen, M. (2024), Low-code platforms in software and data development, Master of Science Thesis, Tampere University, Tampere, FI.
    Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
    Shahrabi, M., & Shojaei, A. A. (2014). Application of FMEA and AHP in Lean Maintenance. International Journal of Modern Engineering Sciences, 3(1), 61-73.
    Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical procedures. Chapman and hall/CRC.
    Swamidass, Paul M. (Ed.) (2000), Encyclopedia of Production and Manufacturing Management, New York, USA.
    Teng, M. L., Huang, M. L., & Liang, H. C. (2024). Applying Microsoft Power Platform to Improve Primary Medical Equipment Maintenance Processes. In Innovation in Applied Nursing Informatics (pp. 594-595). IOS Press.
    Ullagaddi, P. (2024). Digital transformation strategies to strengthen quality and data integrity in pharma. International Journal of Business and Management, 19(5), 16-26.
    Utomo, A., Wijaya, G., & Setiawan, Y. (2023). Implementation of Crowdfunding Web Application Using AWS Amplify Architecture with End-to-End Testing Using Playwright. Indonesian Journal of Multidisciplinary Science, 2(11), 3888-3904.
    Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: towards a cloud definition. ACM sigcomm computer communication review, 39(1), 50-55.
    Viljoen, A., Altın, E. N., Hein, A., and Krcmar, H. (2024). “Beyond citizen development: exploring low-code platform adoption by professional software developers,” Americas Conference on Information Systems, Aug. 15-17, Salt Lake City, USA.
    Wakiru, J. M., Pintelon, L., Muchiri, P., & Chemweno, P. (2021). Integrated maintenance policies for performance improvement of a multi-unit repairable, one product manufacturing system. Production Planning & Control, 32(5), 347-367.
    Wang, C. N., Vo, T. T. B. C., Chung, Y. C., Amer, Y., & Truc Doan, L. T. (2024). Improvement of manufacturing process based on value stream mapping: a case study. Engineering Management Journal, 36(3), 300-318.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE