簡易檢索 / 詳目顯示

研究生: 賴祐炫
Lai, Yu-Hsuan
論文名稱: 反應流模型應用於氫氣/氧氣/鉑觸媒燃燒之研究
Reacting Flow Modeling on the Study of Hydrogen-Oxygen-Platinum Catalytic Combustion
指導教授: 袁曉峰
Yuan, Tony
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 181
中文關鍵詞: 表面反應反應流模型觸媒燃燒
外文關鍵詞: Catalytic Combustion, Reactive Flow Modeling, Surface Reaction
相關次數: 點閱:47下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文建立了二維橢圓模式之層流平板流與停滯流數值模型,並利用此數值模型來探討氫氣在鉑觸媒上的氧化反應的特性。在平板流方面,所發展的程式具有直接以能量守恆計算出觸媒表面溫度的特色,與本實驗室在當量比0.1到0.33、出口速度10cm/sec的平板流近表面溫度量測數據比較,計算出的近表面溫度與實驗量測的結果相當吻合,並且由模擬的結果推斷出在層流平板流中觸媒燃燒反應是被氫氣的擴散速度所控制的。
    停滯流實驗配合數值模擬是目前用來驗證觸媒燃燒反應機構的主要方法之ㄧ,利用本論文中所建立的二維停滯流模擬程式,證實了文獻中常用的一維模擬程式只能適用於長寬比低於1至3的幾何外型上。將一維和二維程式的計算結果,與文獻中典型的停滯流反應器的量測數據比較,結果顯示二維計算與實驗數據較為相符。
    利用所建立的模擬程式與文獻中或我們實驗室的量測數據來驗證目前發表的勻相與非勻相反應,結果顯示目前發表的反應機構在觸媒點火溫度計算上、在表面溫度1170K之平板流與1300K之停滯流的近表面OH濃度的計算上,與實驗結果仍有相當的差距。其中 OH濃度計算的差異主要是由於溫度量測與氣相反應速率常數的不確定性所造成;然而在觸媒點火溫度上的差異則必須透過修正非勻相反應機構來消除,目前文獻中所提出的修正方式因為必須將反應係數調整到實驗量測值的範圍之外而顯得不合理,因此本研究提出包含Eley-Rideal (ER)反應的反應機構來解釋量測與計算的觸媒點火溫度的差異。在加入的24個ER反應中,O2+H*→HO2+Pt*會促進觸媒點火。而另外兩個ER反應OH+O*→HO2*與 H2O+O*→OH*+OH以及表面反應O2+H*→ HO2+Pt*則是對近表面OH濃度相當靈敏,但最後這三個反應的重要性需要更多的近表面OH定量量測結果來確認。

    Two-dimensional elliptic models have been developed in this thesis research to simulate the heterogeneous reactions in laminar flat-plate and stagnation flows. The reaction mechanism of hydrogen oxidation on platinum was studied. Both Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) type reactions were introduced into the trial mechanism. Experimental data in the literature as well as from our laboratory experiments were used to verify the adequacy of the models. The results showed that the predicted surface temperatures from the flat-plate model were in excellent agreement with the measured data with equivalence ratios from 0.1 to 0.33 at the inlet velocity 10cm/sec. The calculated results also showed that the catalytic combustion process was H2-diffusion controlled in laminar flow conditions.
    The stagnation-reacting flow experiments in conjunction with the modeling were used to verify the catalytic reaction mechanisms. The 2-D model constructed in this research verified the inadequacy of the 1-D model, which was the most popular code in the modeling of stagnation flow. The results show that the 1-D model is only applicable in the experimental configurations with a length-to-width ratio of less than 1 to 3 (depending on the flow conditions). The calculations of the 1-D and 2-D models are also compared with the OH measurements performed in a typical stagnation-flow reactor with a length-to-width ratio of 16. As expect, the computations using the 2-D model were in better agreement with the experimental data.
    The elliptic model was also modified to calculate the catalytic ignition temperatures of hydrogen on platinum wire. Considerable disagreement on the measured ignition temperature data with the calculations was shown with only the LH type of reaction mechanism. By introducing ER-type reactions, which were considered the direct interactions between gas-phase species and the species adsorbed into the mechanism, the simulation predicted lower ignition temperatures. Together with justifying the sticking coefficient of H2 to 0.16, an experimental observing value at room temperature, the calculated ignition temperatures adequately described the experimental results.
    Although the ER-type reactions were shown to be insignificant in the calculation of the surface temperatures, in the 24 ER-type reactions added to the mechanism, the reaction O2+H*→HO2+Pt* showed sensitivity in lowering the predicted catalytic ignition temperatures; OH+O*→HO2* and H2O+O*→OH*+OH coupled with surface reaction HO2*+Pt*→O*+OH* were found to be highly sensitive to the near-surface OH concentrations in the flat-plate reacting flow simulations. The importance of the ER-type reactions require further identification with detailed data on the near-surface OH concentrations in the flat-plate reacting flow experiments.

    摘要 i 簡述 iii ABSTRACT xi CONTENTS xiii LIST OF TABLES xvi LIST OF FIGURES xvii NOMENCLATURE xx CHAPTER I INTRODUCTION 1 1.1 Background 1 1.1.1 Reduction of Nitrogen Oxides 1 1.1.2 Micro-combustor 4 1.2 Fundamental Studies of Catalytic Combustion 7 1.2.1 Behavior of Catalytic Combustion 8 1.2.2 Experimental Measurements 9 1.2.3 Kinetics Studies 12 1.3 Modeling Catalytic Combustion 14 1.3.1 Stagnation Flow 15 1.3.2 Flat-plate Flow 19 1.3.3 Catalytic Ignition 20 1.4 Catalytic Combustion of Hydrogen 21 1.5 Motivations and Objects 27 1.6 Thesis Overview 28 CHAPTER II NUMERICAL MODELS 30 2.1 Governing Equations 30 2.2 Chemical Reactions 32 2.2.1 Homogeneous Reactions 33 2.2.2 Heterogeneous Reactions 35 2.3 Thermodynamic and Transport Properties 40 2.4 Boundary Conditions 42 2.5 Numerical Methods and Computational Tools 44 2.6 Reaction Mechanisms 45 CHAPTER III FLAT-PLATE FLOW 47 3.1 Overview 47 3.2 Experiments 47 3.3 Measured Results 51 3.4 Modeling Results 51 3.5 Discussions of Modeling Results 53 CHAPTER IV STAGNATION FLOW 57 4.1 Overview 57 4.2 Comparisons of 1-D and 2-D Models 57 4.2.1 Effects of Geometries 58 4.2.2 Effects of the Flow Conditions 59 4.2.3 Effects of Thermal Recirculation 62 4.3 Comparisons with Experimental Results 63 4.3.1 Experimental Setup and Flow Modeling 63 4.3.2 Results 65 CHAPTER V VERIFICATION OF REACTION MECHANISMS 68 5.1 Overview 68 5.2 Measured Results and the Modeling Procedures 69 5.2.1 OH Concentration in Flat-plate Flows 69 5.2.2 Measurements of Ignition Temperatures 70 5.3 Verifications of Current Reaction Mechanisms 72 5.3.1 Homogeneous Reaction Mechanisms 72 5.3.2 Sensitivity Analysis 74 5.3.3 Heterogeneous Reaction Mechanisms 77 5.3.4 Dominant Reactions 80 5.3.5 Other Important Parameters 82 5.4 Eley-Rideal Reactions 83 5.4.1 Rate Constants 84 5.4.2 Modeling Results 86 5.5 Discussions on the Differences Between Calculations and Measurements 89 CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS 93 REFERENCES 96 TABLES 109 FIGURES 118

    Aghalayam, P., Park, Y. K., and Vlachos, D. G., “Construction and optimization of complex surface-reaction mechanisms”, AIChE Journal, Vol. 46, pp.2017-2029, 2000.
    Ahn, J., Eastwood, C., Sitzki, L., and Ronney, P. D., “Gas-phase and catalytic combustion in heat-recirculating burners”, Proceedings of the Combustion Institute, Vol. 30, pp. 2463-2472, 2005.
    Appel, C., Mantzaras, J., Schaeren, R.; Bombach, R., Inauen, A., Kaeppeli, B., Hemmerling, B., and Stampanoni, A., “An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum”, Combustion and Flame, Vol. 128, pp.340-368, 2002.
    Appel, C., Mantzaras, J., Schaeren, R., Bombach, R., Inauen, A., Tylli, N., Wolf, M., Griffin, T., Winkler, D., and Carroni, R., “Partial catalytic oxidation of methane to synthesis gas over rhodium: in situ Raman experiments and detailed simulations”, Proceedings of the Combustion Institute, Vol. 30, pp.2509-2517, 2004.
    Arai, H. and Fukuzawa, H., “Research and development on high temperature catalytic combustion”, Catalysis Today, Vol. 26, pp. 217-221, 1995.
    Ashman, P. J. and Haynes, B. S., “Rate Coefficient of H+O2→HO2+M (M=H2O, N2, Ar, CO2)”, 27th Symposium (Int.) on Combustion / The Combustion Institute, pp.185-191, 1998.
    Beebe, K. W., Cairns, K. D., Pareek, V. K., Nickolas, S. G., Schlatter, J. C., and Tsuchiya, T., “Development of catalytic combustion technology for single-digit emissions from industrial gas turbines”, Catalysis Today, Vol. 59, pp.95-115, 2000.
    Biener, J., Lang, E., Lutterloh, C, and Küppers, J., “Reactions of gas-phase H atoms with atomically and molecularly adsorbed oxygen on Pt(111)”, Journal of Chemical Physics, Vol. 116, pp.3063-3074, 2002.
    Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena. John Wiley & Sons, Inc., New York, pp.23-25 & 554-580,1960.
    Blowers, P. and Masel, R., “Engineering Approximations for Activation Energies in Hydrogen Transfer Reactions”, AIChE Journal, Vol. 46, pp.2041-2052, 1996.
    Bond, T. C., Noguchi, R. A., Chou, C.-P., Mongia, R. K., Chen, J.-Y., and Dibble, R. W., “Catalytic oxidation of natural gas over supported platinum: flow reactor experiments and detailed numerical modeling” 26th Symposium (Int.) on Combustion / The Combustion Institute, pp.1771-1778, 1996.
    Bowman, C. T., “Control of combustion-generated nitrogen oxide emissions”, 24th Symposium (Int.) on Combustion / The Combustion Institute, pp.859-878, 1992.
    Bozzelli, J. W., and Dean A. M. “O+NNH:A Possible New Route for NOx Formation in Flames”, International Journal of Chemical Kinetics Vol. 27, pp.1097-1109, 1995.
    Bradley, J. M., Hopkinson, A., and King, D. A., “Molecular beam study of ammonia adsorption on Pt{100}”, Surface Science, Vol.371, pp.255-263, 1997.
    Brewster, B. S, Cannon, S. M., Farmer, J. R., and Meng, F., “Modeling of lean premixed combustion in stationary gas turbines”, Progress in Energy and Combustion Science Vol. 25, pp.353–385, 1999.
    Bruno, C. Walsh, P. M., Santavicca, D. A., Sinna, N. Yaw, Y., and Bracco, F.V., “Catalytic Combustion of Propane/Air Mixtures on Platinum”, Combustion Science and Technology, Vol. 31, pp.43-74, 1983.
    Bui, P.-A., Vlachos, D. G., and Westmoreland, P. R., “Catalytic ignition of methane/oxygen mixtures over platinum surfaces: Comparison of detailed simulations and experiments”, 26th Symposium (Int.) on Combustion / The Combustion Institute, pp.1763-1770, 1996.
    Bui, P.-A., Vlachos, D. G., and Westmoreland, P. R., “Catalytic ignition of methane/oxygen mixtures over platinum surfaces: Comparison of detailed simulations and experiments”, Surface Science, Vol. 385, pp.L1029-L1034, 1997a.
    Bui, P.-A., Vlachos, D. G., and Westmoreland, P. R., “Modeling ignition of catalytic reactors with detailed surface kinetics and transport: Oxidation of H2/air mixtures over platinum surfaces”, Industrial & Engineering Chemistry Research, Vol. 36, pp.2558-2567, 1997b.
    Bui, P.-A., Wilder, E. A., Vlachos, D. G., and Westmoreland, P. R. “Hierarchical reduced models for catalytic combustion: H2/air mixtures near platinum surfaces”, Combustion Science and Technology, Vol.129, pp.243-275, 1997.
    Burcat, A., “Thermochemical data for combustion calculations”, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.455-486, 1984.
    Burton, K. A., Ladouceur, H. D., and Fleming, J. W., “An Improved Noncatalytic Coating for Thermocouples”, Combustion Science and Technology, Vol. 81, pp. 141-145, 1992.
    Cannon, S. M., Brewster, B. S., and Smoot, L. D. “Stochastic Modeling of CO and NO in Premixed Methane Combustion”, Combustion and Flame Vol. 113, pp.135-146, 1998.
    Capitano, A. T., Gabelnick, A. M., and Gland, J. L., “Gas phase atomic hydrogen reacting with molecular and atomic oxygen to form water on the Pt (111) surface”, Surface Science, Vol.419, pp.104-113, 1999.
    Carleton, K. L., Kessler, W. J., and Marinelli, W. J., “H+O2+M (=N2, H2O, Ar) three-body rate coefficients at 298-750 K”, Journal of Physical Chemistry, Vol. 97, pp.6412-6417, 1993.
    Carroni, R., Griffin, T., and Kelsall, G., “Cathlean: Catalytic, hybrid, lean-premixed burner for gas turbines”, Applied Thermal Engineering, Vol. 24, pp. 1665-1676, 2004.
    Cattolica, R. J. and Schefer, R. W., “Laser fluorescence measurements of the OH concentration in a combustion boundary layer”, Combustion Science and Technology, Vol. 30, pp.205-212, 1983.
    Cho, P. and Law, C. K., “Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum”, Combustion and Flame, Vol. 66, pp.159-170, 1986.
    Chao, Y.-C., Chen, G.-B., Hsu, H.-W., and Hsu, J.-R, “Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor”, Applied Catalysis A: General, Vol.261, pp.99–107, 2004.
    Chou, C.-P., Chen, J.-Y., Evans, G. H., and Winters, W. S., “Numerical Studies of Methane Catalytic Combustion inside a Monolith Honeycomb Reactor Using Multi-Step Surface Reactions”, Combustion Science and Technology, Vol. 150, pp.27-58, 2000.
    Coltrin, M. E., Kee, R. J., and Evans, G. H. “A Mathematical Model of the Fluid Mechanics and Gas-Phase Chemistry in a Rotating-Disk Chemical Vapor Deposition Reactor”, Journal of the Electrochemical Society, Vol. 136, pp.819-829, 1989.
    Coltrin, M. E., Kee, R. J., and Rupley, F. M., “SURFACE CHEMKIN: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface”, Sandia National Laboratories Report, SAND90-8003B, 1990.
    Coltrin, M. E., Kee, R. J., and Rupley, F. M., “Surface CHEMKIN: A general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface”, International Journal of Chemical Kinetics, Vol.23, pp.1111-1128, 1991.
    Correa, S. M., “Review of NOx formation under gas-turbine combustion conditions”, Combustion Science and Technology, Vol. 87, pp.329-362, 1993.
    Cutrone, M. B., Beebe, K. W., Dalla Betta, R. A.; Schlatter, J. C. Nickolas, S. G., and Tsuchiya, T., “Development of a catalytic combustor for a heavy-duty utility gas turbine”, Catalysis Today, Vol. 47, pp. 391-398, 1999.
    Deutschmann, O., Schmidt, R., Behrendt, F., and Warnatz, J., “Numerical modeling of catalytic ignition”, 26th Symposium (Int.) on Combustion / The Combustion Institute, Vol. 1, pp.1747-1754, 1996.
    Deutschmann, O., Schmidt, R., and Behrendt, F., “Interaction of Transport and Chemical Kinetics in Catalytic Combustion of H2/O2Mixtures on Pt”, Proceedings of The 8th International Symposium on Transport Phenomena in Combustion (San Francisco), S. 166-175, Taylor & Francis, Washington, DC, ISBN 1-56032-456-2, 1997.
    Deutschmanna, O., Maier, L. I., Riedel, U., Stroemman, A. H., and Dibble, R. W., “Hydrogen assisted catalytic combustion of methane on platinum”, Catalysis Today, Vol.59, pp.141–150, 2000.
    Dixon-Lewis, G., “Flame structure and flame reaction kinetics”, Proceedings of the Royal Society A, Vol.307, pp.111–135, 1968.
    Dogwiler, U., Mantzaras, J., Benz, P., Kaeppeli, B., Bombach, R., and Arnold, A., “Homogeneous ignition of methane-air mixtures over platinum: Comparison of measurements and detailed numerical predictions”, 27th Symposium (Int.) on Combustion / The Combustion Institute, pp.2275-2282, 1998.
    Dupont, V., Zhang, S.-H., and Williams, A., “Experiments and simulations of methane oxidation on a platinum surface”, Chemical Engineering Science, Vol. 56, pp.2659-2670, 2001.
    Eckbreth, A. C., Laser Diagnostics for Combustion Temperature and species, Gordon and Breach Publishers, pp.442-444, 1996.
    Eisert, F., Elg, A. P., and Rosen, A., “Adsorption of oxygen and hydrogen on Pt(111) studied with second-harmonic generation”, Applied Physics A: Materials Science & Processing, Vol.60, pp.209-215, 1995.
    Eisert, F., Gudmundson, F., and Rosén, A., “In situ investigation of the catalytic reaction H2+1/2O2→H2O with second-harmonic generation”, Applied Physics B, Vol.68, pp.579-587, 1999.
    Etemad, S., Karim, H., Smith, L. L., and Pfefferle, W. C., “Advanced technology catalytic combustor for high temperature ground power gas”, Catalysis Today, Vol. 47, p 305-313, 1999.
    Evans, G. H. and Greif, R. “Forced Flow Near a Heated Rotating Disk: A Similarity Solution”, Numerical Heat Transfer, Vol.14 pp.373-387, 1988
    Fassihi M., Zhdanov V. P., Rinnemo M., Keck, K.-E., and Kasemo, B., “A Theoretical and Experimental-Study of Catalytic Ignition in the Hydrogen Oxygen Reaction On Platinum”, Journal of Catalysis, Vol.141, pp.438-452, 1993.
    Fenimore, C. P., “Studies of Fuel-Nitrogen Species in Rich Flame. Gases”, 17th Symposium (Int.) on Combustion / The Combustion Institute, pp.661-670, 1979.
    Fernandes, N. E., Park, Y. K., and Vlachos, D. G., “The Autothermal Behavior of Platinum Catalyzed Hydrogen Oxidation: Experiments and Modeling”, Combustion and Flame, Vol. 118, pp.164-178, 1999.
    Försth, M., Gudmundson, F., Persson, J. L., and Rosen, A., “Influence of a catalytic surface on the gas-phase combustion of H2 + O2”, Combustion and Flame, Vol.119, pp. 144-153, 1999.
    Försth, M., Laser Diagnostic and Chemical Modeling of Combustion and Catalytic Process, Ph.D. thesis, Department of Experimental Physics Chalmers University of Technology and Göteborg Uuniversity, Göteborg, Sweden, 2001.
    Försth, M., “Sensitivity analysis of the reaction mechanism for gas-phase chemistry of H2+O2 mixtures induced by a hot Pt surface”, Combustion and Flame, Vol.130, pp.241-260, 2002.
    Franklach, A., “Modeling”, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.439-444, 1984.
    Fridell, E. and Rosén, A., “A laser-induced fluorescence study of OH desorption from Pt in H2O/O2 and H2O/H2 mixtures”, Langmuir, Vol.10, pp.699-708, 1994.
    Fridell, E., Elg, A.-P., Rosen, A., and Kasemo, B., “Laser-induced fluorescence study of OH desorption from Pt(111) during oxidation of hydrogen in O2 and decomposition of water”, Journal of Chemical Physics, Vol. 102, pp.5827-5835, 1995.
    Fu, K., Knobloch, A. J., Cooley, B. A., Walther, D. C., Fernandez-Pello, C., Liepmann, D., and Miyaska, K., “Microscale combustion research for applications to MEMS rotary IC engine”, Proceedings of the National Heat Transfer Conference, Vol.1 pp. 613-618, 2001
    Gardiner Jr, W. C. and Troe, J., “Rate Coefficients of Thermal Dissociation, Isomerization, and Recombination Reaction”, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.173-196, 1984.
    Getzinger, R. W. and Blair, L. S., “Recombination in the hydrogen-oxygen reaction: a shock-tube study with nitrogen and water vapor as third bodies”, Combustion and Flame Vol. 13, pp.271-284, 1969.
    Grcar, J. F., “The Twopnt Program for Boundary Value Problems”, Sandia National Laboratories Report, SAND91-8230, 1992.
    Griffin, T. A., Pfefferle, L. D., Dyer, M. J., and Crosley, D. R., “The Ignition of Methane/Ethane Boundary Layer Flows by Heated Catalytic surface”, Combustion Science and Technology, Vol. 65, pp.19-37, 1989.
    Griffin, T. A. and Pfefferle, L. D., “Gas phase and catalytic ignition of methane and ethane in air over platinum”, AIChE Journal, Vol. 36, pp.861-870, 1990.
    Griffin, G. J. and Wood, D. G. “Investigation of Catalytic Combustion Within a Fin Boundary Layer”, Combustion and Flame, Vol.118, pp.3-12, 1999.
    Groppi, G., Tronconi, E., Forzatti, P., and Bergb, M., “Mathematical modelling of catalytic combustors fuelled by gasified biomasses”, Catalysis Today, Vol.59, pp.151–162, 2000.
    Gudmundson, F., Fridell, E., Rosén, A., and Kasemo, B., “valuation of OH Desorption Rates from Pt Using Spatially Resolved Imaging of Laser-Induced Fluorescence”, Journal of Physical Chemistry, Vol. 97, pp.12828-12834, 1993.
    Gudmundson, F., Persson, J. L.; Forsth, M., Behrendt, F., Kasemo, B., and Rosen, A., “OH gas phase chemistry outside a Pt catalyst”, Journal of Catalysis, Vol. 179, pp.420-430, 1998.
    Gupta, A. K. and Lilley, D. G., “Combustion and Environmental Challenges for Gas Turbines in the 1990's”, Journal of Propulsion and Power, Vol.10, pp.137-147, 1994.
    Härle, H., Lehnert, A., Metka, U., Volpp, H.-R., Willms, L., and Wolfrum, J., “In situ detection and surface coverage measurements of CO during. CO oxidation on polycrystalline platinum using sum frequency generation”, Applied Physics B, Vol.68, pp.567-572, 1999.
    Hayes, R. E. and Kolaczkowski, S. T., Introduction to Catalytic Combustion, Gordon & Breach Publishing Group, pp.1-17, 1997.
    Hei, M. J., Chen, H. B., Yi, J., Lin, Y. J., Lin, Y. Z., Wei, G., and Liao. D. W., “CO2-reforming of methane on transition metal surfaces”, Surface Science, Vol.417, pp.82–96, 1998.
    Hellsing, B., Kasemo, B. and Zhdanov, V. P., “Kinetics of the Hydrogen-Oxygen Reaction on Platinum”, Journal of Catalysis, Vol.132, pp.210-228, 1991.
    Herbon, J. T., Hanson, R. K., Golden, D. M., and Bowman, C. T., “A Shock Tube Study the Enthalpy Formation of OH”, 29th Symposium (Int.) on Combustion / The Combustion Institute, pp.1201-1208, 2002.
    Hiemenz, K. “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Dingler’s Polytech Journal, Vol.326, pp.321-410, 1911.
    Holladay, J. D., Jones E. O., Phelps, M., and Hu, J., “Microfuel processor for use in a miniature power supply”, Journal of Power Sources, Vol. 108 pp.21–27, 2002
    Houtman, C., Graves, D. B.; Jensen, K. F. “CVD in Stagnation in Point Flow; An Evaluation of the Classical 1D Treatment”, Journal of the Electrochemical Society, Vol.113, pp.961-970, 1986.
    Hsu, K.-J., Anderson, S. M., Durant, J. L., and Kaufman, F. J., “Rate constants for H+O2+M from 298 to 639 K for M= He, N2 , and H2O”, Journal of Physical Chemistry, Vol. 93, pp.1018-1021, 1989.
    Ikeda, H., Sato, J., and Williams, F. A., “Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows”, Surface Science, Vol. 326, pp.11-26, 1995.
    Incropera, F. P. and DeWitt, D. P., Fundamentals of heat and mass transfer, 3rd edition, John Wiley & Sons Inc., pp.411-420 & A27, 1990.
    Janicke, M. T., Kestenbaum, H., Hagendorf, U., Schüth, F., Fichtner, M., and Schuberty, K., “The Controlled Oxidation of Hydrogen from an Explosive Mixture of Gases Using a Microstructured Reactor/Heat Exchanger and Pt/Al2O3 Catalyst”, Journal of Catalysis, Vol.191, pp.282–293, 2000.
    Joh, S., and Evans, G. H., “Heat transfer and flow stability in a rotating disk/stagnation flow chemical vapor deposition reactor”, Numerical Heat Transfer; Part A: Applications, Vol. 31, pp.867-879, 1997.
    Kajita, S. and Dalla Betta, R. A., “Achieving ultra low emissions in a commercial 1.4 MW gas turbine utilizing catalytic combustion”, Catalysis Today, Vol. 83, p 279-288, 2003.
    Kays, W. M. and Crawford, M. E., Convective Heat and Mass Transfer, ,3rd Edition, McGraw-Hill, New York, pp.19-37, 1993.
    Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., “A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties”, Sandia National Laboratories Report, SAND86-8246, 1986.
    Kee, R. J., Rupley, F. M., and Miller, J. A., “The Chemkin Thermodynamic Database”, Sandia National Laboratories Report, SAND87-8215, 1987.
    Khadiya, N. and Glumac, N. G., “Validation of surface chemistry models using low pressure stagnation-point flames: Measurements of OH above platinum surfaces”, Combustion Science and Technology, Vol. 159, pp.147-167, 2000.
    Kleijn, C. R., “Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition - a benchmark solution”, Thin Solid Films, Vol. 365, pp. 294-306, 2000.
    Koeneman, P. B., Busch-Vishniac, I. J., Wood, K. L., “Feasibility of micro power supplies for MEMS”, Journal of Microelectromechanical Systems, Vol. 6, p 355-362,1997.
    Kohse-Höinghaus, K. and Jeffries, J. B., ed., Applied Combustion Diagnostics, Taylor & Francis, pp.518-519, 2002.
    Kolaczkowski, S. T., “Catalytic stationary gas turbine combustors: a review of the challenges faced to clear the next set of hurdles”, Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, Vol. 73, pp. 168-190, 1995.
    Konnov, A. A. “On the relative importance of different routes forming NO in hydrogen flames”, Combustion and Flame, Vol. 134, pp.421-424, 2003.
    Kreith, F., ed., Mechanical Engineering Handbook, CRC Netbase, Section 4, p.63, 1999.
    Li, J., Zhao, Z., Kazakov, A., and Dryer, F. L., “An Updated Comprehensive Kinetics Model of H2 Combustion”, International Journal of Chemical Kinetics, Vol. 36, pp.1-10, 2004.
    Lide, D. R., ed., Handbook of Chemistry and Physics, 84th edition, CRC press, Section 6, p.179 and Section 12, p.194, 2004.
    Liedtke, O. and Schulz, A., “Development of a new lean burning combustor with fuel film evaporation for a micro gas turbine”, Experimental Thermal and Fluid Science Vol. 27, pp.363–369, 2003.
    Ljunström, S., Kasemo, B., Rosén, A., Wahnström, T., and Fridell, E., “An experimental study of the kinetics of OH and H2O formation on Pt in the H2 + O2 reaction”, Surface science, Vol.216, pp.63-92, 1989.
    Lisowski, W, “Kinetics of Hydrogen Adsorption and Desorption on Thin Platinum Films”, Applied Surface Science, Vol. 31, pp.451-459, 1998.
    Luntz, A. C., Brown, J. K., and Williams, M. D., “Molecular beam studies of H2 and D2 dissociative chemisorption on Pt(111)”, Journal of Chemical Physics, Vol.93, pp.5240-5246, 1990.
    Lynch, M. and Hu, P., “Density functional theory study of CO and atomic oxygen chemisorption on Pt(111)”, Surface Science, Vol.458, pp. 1-14, 2000.
    Mantzaras, J., Appel, C., and Benz, P., “Catalytic combustion of methane/air mixtures over platinum: Homogeneous ignition distances in channel flow configurations”, 28th Symposium (Int.) on Combustion / The Combustion Institute, pp.1349-1356, 2000.
    Marinov, N., Westbrook, C. K., and Pitz, W. J., “Detailed and Global Chemical Kinetics Model for Hydrogen”, Transport Phenomena in Combustion, edited by S. H. Chan, Talyor and Francis, Washington,DC, 1996
    Markatou, P., Pfefferle, L. D., and Smooke, M. D. “A Computational Study of Methane-Air over Heated Catalytic and Non-Catalytic Surfaces”, Combustion and Flame Vol.93, pp.185-201, 1993.
    Masel, R. I., Principles of Adsorption and Reaction on Solid Surface, John Wiley & Sons, pp.444-448 & pp.618-634, 1996.
    McDaniel, A. H., Lutz, A. E., Allendorf, M. D., and Rice, S. F., “Effects of Methane and Ethane on the Heterogeneous Production of Water from Hydrogen and Oxygen over Platinum in Stagnation Flow”, Journal of Catalysis, Vol. 208, pp.21–29, 2002.
    Michaelides, A. and Hu, P., “A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt”, Journal of Chemical Physics, Vol. 114 pp.513-519, 2001.
    Miesse, C. M., Masel, R. I.; Jensen, C. D.; Shannon, M. A., and Short, M., “Submillimeter -scale combustion”, AIChE Journal, Vol. 50, pp. 3206-3214, 2004.
    Miller, J. A. and Bowman, C. T., “Mechanism and modeling of nitrogen chemistry in combustion”, Progress in Energy and Combustion Science, Vol. 15, pp.287-338, 1989.
    Motz, H. and Wise, H., “Diffusion and Heterogeneous Reaction III: Atom Recombination at a Catalytic Boundary”, Journal of Chemical Physics, Vol.32, pp.1893-1894, 1960.
    Mueller, M. A, Kim, T. J., Yetter, R.A., and Dryer, F.L., “Flow reactor studies and kinetic modeling of the H2/O2 reaction”, International Journal of Chemical Kinetics, Vol.31, pp.113-125, 1999.
    Nguyen, N.-T. and Wereley, S. T., Fundamentals and applications of microfluidics, Artech house, pp.207-370, 2002.
    Nishiyama, Y. and Wise, H., “Surface interactions between chemisorbed species on platinum: Carbon monoxide, hydrogen, oxygen, and methanol”, Journal of catalysis, Vol. 30, pp.50-62, 1974.
    Norton, D. G. and Vlachos, D. G., “Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners”, Proceedings of the Combustion Institute, Vol.30, pp.2473–2480, 2005.
    Norton, P. R. and Richards, P. J., “Hydrogen Isotope Chemisorption and Equilibration on Pt”, Surface Science, Vol.41, pp.293-311, 1974a.
    Norton, P. R. and Richards, P. J., “The Heat of Adsorption of Hydrogen on Platinum”, Surface Science, Vol.44, pp.129-140, 1974b.
    Norton, P. R., Davies, J. A., and Jackman, T. E., “Absolute Coverage and Isosteric Heat of Adsorption of Deuterium on Pt(111) Studied by Nuclear Microanalysis”, Surface Science, Vol.121, pp.103-110, 1982.
    Olivera, P. P., Patrito, E. M., and Sellers, H., “Hydrogen peroxide synthesis over metallic catalysts”, Surface Science, Vol.313, pp.25-50, 1994.
    Papadias, D., Zwinkels, M.F.M., Edsberg, L., and Björnbom, P., “Modeling of high-temperature catalytic combustors: Comparison between theory and experimental data”, Catalysis Today, Vol.47, pp.315-319, 1999.
    Park, Y. K., Bui, P.-A., and Vlachos, D. G., “Operation regimes in catalytic combustion: H2/air mixtures near Pt”, AIChE Journal, Vol. 44, pp.2035-2043, 1998.
    Park, Y. K., Aghalayam, P., and Vlachos, D. G., “A generalized approach for predicting coverage-dependent reaction parameters of complex surface reactions: Application to H-2 oxidation over platinum”, Journal of Physical Chemistry A, Vol.103, pp.8101-8107, 1999.
    Prakash, S., Glumac, N.G., Shankar, N., Shannon, M.A., “OH Concentration Profiles over Alumina, Quartz, and Platinum Surfaces using Laser Induced Fluorescence Spectroscopy in Low-Pressure Hydrogen/Oxygen Flames”, Combustion Science and Technology, Vol. 177, pp.793-817, 2005.
    Patankar. S. V., Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York, pp.41-135, 1980.
    Paul, J.-F. and Sautet , P., “Influence of the surface atom metallic coordination in the adsorption of ethylene on a platinum surface. A theoretical study”, Journal of Physical Chemistry, Vol.98, pp.10906-10912, 1994.
    Pendry, J. B., “LEED and the crystallography of surfaces”, Surface Science Report, Vol.19, pp. 87-97, 1993.
    Perger, T., Kovács, T., Turányi, T., and Treviño, C., “Determination of Adsorption and Desorption Parameters from Ignition Temperature Measurements in Catalytic Combustion Systems”, Journal of Physical Chemistry Part B, Vol.107, pp.2262-2274, 2003.
    Pfefferle, W. C. and Pfefferle, L. D., “Catalytically Stabilized Combustion”, Progress in Energy and Combustion Science, Vol. 12, pp.25-41, 1986.
    Pfefferle, L. D. and Pfefferle, W. C., “Catalysis in Combustion”, Catalysis Reviews - Science and Engineering, Vol. 29, pp. 219-267, 1987.
    Pfefferle, L. D., Griffin, T. A., Winter, M., Crosley, D. R., and Dyer, M. J., “The Influence of catalytic activity on the ignition of boundary layer flows Part I: Hydroxyl radical measurements”, Combustion and Flame, Vol.76, pp.325-338, 1989a.
    Pfefferle, L. D., Griffin, T. A., Dyer, M. J., and Crosley, D. R., “The Influence of catalytic activity on the ignition of boundary layer flows Part II: Oxygen atom measurements”, Combustion and Flame, Vol.76, pp.339-349, 1989b.
    Pijper, E., Kroes, G. J., Olsen, R. A., and Baerends, E. J., “The effect of corrugation on the quantum dynamics of dissociative and diffractive scattering of H2 from Pt(111)”, Journal of Chemical Physics, Vol.113, pp.8300-8312, 2000.
    Polanyi, J. C., “Some concepts in reaction dynamics”, Accounts of Chemical Research, Vol.5, pp.161-168, 1972.
    Procop, M and Volter, J, “Adsorption of H on Pt. Pt. 1. Amount of Adsorbate, Kinetics of Ad-, and Desorption”, Surface Science, Vol.33, pp.69-81, 1972.
    Quick, L.M. and Kamitomai, S., “Catalytic combustion reactor design and test results”, Catalysis Today, Vol.26, pp.303-308, 1995.
    Rader, C. G. and Weller, S. W., “Ignition on catalytic wires: kinetic parameter determination by the heated-wire technique”, AIChE Journal, Vol. 20, pp.515-522, 1974.
    Raja, L. L., Kee K. J., and Petzold, L. R., “Simulation of the transient, compressible, gas-dynamic behavior of. catalytic-combustion ignition in stagnation flows”, 27th Symposium (Int.) on Combustion / The Combustion Institute, pp.2249-2257, 1998.
    Raja, L. L., Kee, K. J., Deutschmann, O., Warnatz, J., and Schmidt, L. D. “A Critical Evaluation of Navier-. Stokes, Boundary-Layer, and Plug-Flow Models of the Flow and chemistry in a Catalytic Combustion. Monolith”, Catalysis Today, Vol.59, pp.47-60, 2000.
    Reid, R. C., Prausnitz, J. M., and Poling, B. E., The properties of gases and liquids. 4th edition, McGraw-Hill Book Company, pp.388-626, 1987.
    Reinke, M., Mantzaras, J. Bbach, R., Schenker, S., and Inauen, A., “Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar” Combustion and Flame, Vol.141, pp.448-468, 2005
    Rinnemo, M., Deutschmann, O. Behrendt, F., and Kasemo, B., “Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum”, Combustion and Flame, Vol. 111, pp.312-326, 1997.
    Rortveit, G. J. Hustad, J. E., Li, S.-C. and Williams, F. A., “Effects of diluents on NOx formation in hydrogen counterflow flames”, Combustion and Flame, Vol. 130, pp.48-61, 2002.
    Ruscic, B., Wagner, A. F., Harding, L. B., Asher, R. L., Feller, D., Dixon, D. A., Peterson, K. A., Song, Y., Qian, X., Ng, C., Liu, J., Chen, W., and Schwenke, D. W., “On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl”, Journal of Physical Chemistry A, Vol.106, pp.2727-2747, 2002.
    Sachs, C., Hildebrand, M., Völkening, S., Wintterlin, J., and Ertl, G., “Reaction fronts in the oxidation of hydrogen on Pt(111): Scanning tunneling microscopy experiments and reaction–diffusion modeling”, Journal of Chemical Physics, Vol.116, pp.5759-5773, 2002.
    Sadamori, H., “Application concepts and evaluation of small-scale catalytic combustors for natural gas”, Catalysis Today, Vol.47, pp.325-338, 1999.
    Samson, P., Nesbitt, A., Koel, B. E., and Hodgsona, A., “Deuterium dissociation on ordered Sn/Pt(111) surface alloys”, Journal of Chemical Physics, Vol.109, pp.3255-3264, 1998.
    Santen, R. A. van and Niemantsverdriet, J. W., Chemical Kinetics and Catalysis, Plenum Press, New York, pp.105-148, 1995.
    Schefer, R. W., Robben, F., and Cheng, R. K., “Catalyzed combustion of H2/air mixtures in a flat-plate boundary layer: I. Experimental results”, Combustion and Flame, Vol. 38, pp.51-63, 1980.
    Schefer, R. W., “Catalyzed combustion of H2/air mixtures in a flat-plate boundary layer: II. Numerical models”, Combustion and Flame, Vol. 45, pp.171-190, 1982.
    Schwartz A., Holbrook L. L., and Wise, H., “Catalytic oxidation studies with platinum and palladium”, Journal of Catalysis, Vol. 21, pp.199-207, 1971.
    Sellers, H., “The generalized UBI-QEP method for modeling the energetics of reactions on transition metal surfaces”, Surface Science, Vol.524, pp.29–39, 2003.
    Shaddix, C. R. “Correcting thermocouple measurements for radiation loss: A criticalreview”, Proceedings of the 33rd National Heat Transfer Conference, paper HTD99-282, 1999.
    Shustorovich, E., “The bond-order conservation approach to chemisorption and heterogeneous catalysis: applications and implications”, Advances in Catalysis, Vol.37, pp. 101-163, 1990.
    Shustorovich, E. and Sellers, H., “UBI-QEP method: A practical theoretical approach to understanding chemistry on transition metal surfaces”, Surface Science Report, Vol.31, pp. 1-119, 1998.
    Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, Jr., W. C., Lissianski, V. V., and Qin, Z., http://www.me.berkeley.edu/gri_mech/
    Solymosi, F., Erdöhelyi, A., and Cserényi, J., “A comparative study on the activation and reactions of CH4 on supported metals”, Catalysis Letters, Vol.16, pp. 399-405, 1992.
    Somorjai, G. A., “New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions”, Applied Surface Science, Vol.121-122, pp.1-19, 1997.
    Spadaccini, C. M., Zhang, X., Cadou, C. P., Miki, N., and Waitz, I. A., “Preliminary development of a hydrocarbon-fueled catalytic micro-combustor”, Sensors and Actuators A, Vol.103, pp.219–224, 2003.
    Steele, R. C., Malie, P. C., Nicol, D. G., Kramlich, J. C., “NOx and N2O in lean-premixed jet-stirred flames”, Combustion and Flame, Vol. 100, pp.440-449, 1995.
    Sze, S.M., ed., Semiconductor Sensors. John Wiley & Sons Inc., pp.97-530, 1994.
    Thevenin, P. O., Ersson, A. G., Kusar, H. M. J., Menon, P. G., and Jaras, S. G., “Deactivation of high temperature combustion catalysts”, Applied Catalysis A: General, Vol. 212, pp.189-197, 2001.
    Thomas, V. D., Schwank, J. W., and Gland, J. L., “Hydrogen desorption from polycrystalline platinum chemically modified by sulfur pre-coverage”, Surface Science, Vol.501, pp.214–234, 2002.
    Treviño, C., Liñán, A., and Kurdyumov, V., “Autoignition of hydrogen/air mixtures by a thin catalytic wire”, Proceedings of the Combustion Institute, Vol. 28, pp.1359-1364, 2000.
    Tsong, T. T., “Mechanisms of Surface Diffusion” Progress in Surface Science, Vol.67, pp.235-248, 2001
    Tsujikawa, Y., Fujii, S., Sadamori, H., Ito, S., and Katsura, S., “Numerical simulation of the two-dimensional flow in high pressure catalytic combustor for gas turbine”, Catalysis Today, Vol. 26, pp.267-274, 1995.
    Veser, G. and Schmidt, L. D., “Ignition and extinction in the catalytic oxidation of hydrocarbons over platinum”, AIChE Journal, Vol. 42, pp.1077-1087, 1996.
    Veser, G., Ziauddin, M., and Schmidt L. D., “Ignition in alkane oxidation on noble-metal catalysts”, Catalysis Today, Vol.47, pp.219-228, 1999.
    Vlachos, D. G. and Bui, P.-A., “Catalytic ignition and extinction of hydrogen: comparison of simulations and experiments”, Surface Science, Vol.364, pp.L625-L630, 1996.
    Wahnström, T., Fridell, E., Ljunström, S., Hellsing, B. Kasemo, B. and Rosén, A., “Determination of the activation energy for OH desorption in the H2 + O2 reaction on polycrystalline platinum”, Surface Science, Vol.233, pp.L905-L912, 1996.
    Waitz, I. A., Gauba, G., and Tzeng, Y.-S., “Combustors for micro-gas turbine engines”, Journal of Fluids Engineering, Vol. 120, pp. 109-117, 1998.
    Walker, A. V. and King, D. A., “A molecular-beam study of methane dissociative adsorption on oxygen-precovered Pt{110}(1×2)”, Surface Science, Vol.444, pp.1-6, 2000.
    Wang, H., Biesecker, J. P., Iedema, M. J., Ellison, G. B., and Cowin, J. P., “Low-energy deposition and collision-induced dissociation of water ions on Pt(111)”, Surface Science, Vol.381, pp. 142-156, 1997.
    Warnatz, J., Allendorf, M. D., Kee, R. J., and Coltrin, M. E., “Model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces”, Combustion and Flame, Vol. 96, pp.393-406, 1994.
    Whitaker, S., “Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles”, AlChE Journal, Vol. 18, pp. 361-371, 1972.
    White, F. M., Viscous Fluid Flow, McGraw-Hill, pp.152-167, 1991.
    Whitten, J. L. and Yang, H., “Theory of chemisorption and reactions on metal surfaces”, Surface Science Report, Vol.24, pp.55-124, 1996.
    Wilke, C. R., “A Viscosity Equation for Gas Mixtures”, Journal of Chemical Physics, Vol.18, pp.517-523, 1950.
    Williams, W. R., Stenzel, M. T., Song, X., and Schmidt, L. D., “Bifurcation behavior in homogeneous-heterogeneous combustion. I. Experimental results over platinum”, Combustion and Flame, Vol. 84, pp.277-291, 1991.
    Williams, W. R., Marks, C. M., and Schmidt, L. D., “Steps in the reaction H2 + O2 <=> H2O on Pt. OH desorption at high temperatures”, Journal of Physical Chemistry, Vol.96, pp.5922-5831, 1992.
    Yang, W. M., Chou, S. K., Shu, C., Li, Z. W., and Xue, H., “Research on micro-thermophotovoltaic power generators”, Solar Energy Materials and Solar Cells, Vol. 80, pp.95-104, 2003.
    Zeldovich, J., “The Oxidation of Nitrogen Combustion and Explosions”, Acta Physiochem., URSS, Vol.21, pp.577-628, 1946.
    Zellner, R. “Bimolecular Reaction rate Coefficients”, Combustion Chemistry, W. C. Gardiner Jr., Ed., Springer, New York, pp.127-172, 1984.
    Zhdanov, V. P., “Some Aspects of the Kinetics of the Hydrogen-Oxygen Reaction over the. Pt(111) Surface”, Surface Science, Vol.169, pp.1–13, 1986.

    下載圖示 校內:立即公開
    校外:2007-08-24公開
    QR CODE