| 研究生: |
徐偉菖 Hsu, Wei-Chung |
|---|---|
| 論文名稱: |
台灣中部上-更新世前陸盆地沉積物來源與造山帶剝蝕歷史研究:麓山帶碎屑鋯石核飛跡與鈾鉛雙重定年分析 Study of Plio-Pleistocene Foreland Basin Provenance and Orogenic Exhumation History in Central Taiwan: Fission-Track and U-Pb Dating Analyses of Detrital Zircon from Western Foothills |
| 指導教授: |
林冠瑋
Lin, Kuan-Wei |
| 共同指導教授: |
楊耿明
Yang, Keen-Ming 李元希 Lee, Yuan-His |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 前陸盆地 、核飛跡定年 、鈾鉛定年 、滯後時間 、剝蝕 |
| 外文關鍵詞: | foreland basin, fission-track, uranium-lead dating, lag time, exhumation |
| 相關次數: | 點閱:79 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在造山運動過程中,造山帶的碎屑沉積物被剝蝕傳輸至前陸盆地,造山作用隨時間的發展過程中,剝蝕的岩層由沉積岩逐漸將變質岩剝蝕沉積至前陸盆地。鋯石核飛跡為低溫熱定年系統,可以反映造山帶岩層被深埋的溫度及抬升時冷卻的年代,因此當沉積物沉積至前陸盆地時,分析盆地碎屑鋯石核飛跡定年可以反映山脈剝蝕隨時間的變化。鋯石鈾鉛定年由於具高溫的封存溫度,不易受後來變質作用影響,因此在沉積盆地中鋯石鈾鉛年代譜可以反映來源區的岩層特性。
本研究分析台灣中部前陸盆地中,岩層的鋯石核飛跡定年及鈾鉛定年的雙重定年,藉此分析來源區中部雪山山脈剝蝕歷史。
本研究分析台灣中部烏溪流域上新世的錦水頁岩、更新世的卓蘭層與頭嵙山層的沉積岩。根據碎屑核飛跡定年結果,由錦水頁岩到卓蘭層中段間,鋯石核飛跡年代顯示以未癒合年代為主。在卓蘭層上部到頭嵙山層之間,鋯石核飛跡年代轉變為部份癒合年代群,在香山相開始出現小於6.5Ma的鋯石核飛跡年代。碎屑鋯石鈾鉛定年結果顯示,沉積物來源由錦水頁岩到頭嵙山層香山相之間,由年代譜顯示沉積來源由漸新世、中新世地層轉為始新世地層。由雙重定年結果得知,核飛跡年代小於65Ma的鋯石並非新生代火山活動的產物。本研究進一步分析核飛跡年代峰值與沉積地層年代的關係,滯後時間在1.1~0.5Ma快速縮短,顯示來源區崛起速率處於加速狀態。本研究最後將核飛跡年代分佈特性與西部麓山帶內不同地區之研究結果進行比較,癒合帶出露的時間以濁水溪流域最早,烏溪較晚。
由碎屑鋯石的鈾鉛定年與核飛跡定年得知,沉積物來源逐漸改變由未變質的中新世地層到淺變質的漸新世到始新世地層,在頭嵙山層香山相時,開始剝蝕變質度較高的始新世地層。在1.1~0.5Ma造山帶抬升速率由974m/m.y.加速至1196m~1286 m/m.y。鋯石完全癒合帶出露時間以濁水溪流域的1.6Ma最早。
In this study, we used low-temperature thermochronology to investigate the depositional source and exhumation rates of mountain belt in central Taiwan. We collected four sedimentary rock samples from Chiunkongliao River and one sample from Wuxi. Based on zircon fission-track (ZFT) dating and uranium-lead (U-Pb) dating, we find that the percentage of partial reset zircon increases from the Chinshui Shale to the Toukoshan Formation, and total reset zircon appear in the Toukoshan Formation. In addition, the probability-density of U-Pb dating in the Toukoshan Formation inclines more to the Oligocene than the Miocene. From the double-dating, the ZFT age less than 65Ma is not the product of Cenozoic volcanic activity. The above result indicates the origin of depositional source does change from the Cholan Formation to the Toukoshan Formation. By the lag time curve, the exhumation rate was accelerating during the time period from 1.1 Ma to 0.5Ma. Comparing our results with previous studies in Western Foothills, the annealing zone was exposed the earliest in the Zhuoshui River and later in Wuxi.
何春蓀(1986)台灣地質概論(第二版)。經濟部中央地質調查所,共164頁。
吳宜儒(2018)台灣中部頭嵙山層與卓蘭層之碎屑鋯石核飛跡與鈾-鉛定年及其構造意涵。國立中正大學地球與環境科學系研究所碩士論文,共77頁。
周素卿、鄧屬予、鍾火盛、蕭從文(1994)台灣西部前陸盆地地史分析初探。台灣石油地質,第29冊,第289-323頁。
陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文等人(2016)台灣地質概論。中華民國地質學,共204頁。
陳培源、劉德慶、黃怡禎(2003)台灣地質系列第14號:台灣之礦物,共415頁。
陳肇夏、王京新(1995)台灣變質相圖說明(第二版)。經濟部中央地質調查所特刊,第2冊,共51頁。
鄂忠信(1995)由台灣地區上部漸新統至更新統碎屑性鋯石的核飛跡年代探討源岩區的岩層特性。國立台灣大學地質學研究所碩士論文,共90頁。
楊凱翔、楊耿明、許錕安、李元希(2019)台南西南部嘉義地區澐水溪剖面碎屑鋯石核飛跡之研究。「中華民國地球物理學會與中華民國地質學會108 年年會暨學術研討會」發表之論文。
蔡宛玲(2012)台灣新生代變質岩的碎屑鋯石鈾鉛年代及其地層時代的意義。國立中正大學應用地球物理與環境科學研究所學位論文,共180頁。
蔡昀曆(2018)台灣中部前陸盆地濁水溪流域碎屑鋯石之核飛跡與鈾鉛定年分析及其意義。國立中正大學應用地球物理與環境科學研究所學位論文,共95頁。
中國石油公司台灣油礦探勘總處(1982)十萬分之一地質圖台中圖幅。中國石油公司出版。
Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical geology, 192(1-2), 59-79.
Bernet, M., Brandon, M. T., Garver, J. I., & Molitor, B. (2004). Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geological Society of America Special Publication, 378, 25-36.
Bernet, M., & Garver, J. I. (2005). Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1), 205-237.
Bernet, M., Zattin, M., Garver, J. I., Brandon, M. T., & Vance, J. A. (2001). Steady-state exhumation of the European Alps. Geology, 29(1), 35-38.
Brandon, M. T. (2002). Decomposition of mixed grain age distributions using Binomfit. On track, 24(8), 13-18.
Brandon, M. T., Roden-Tice, M. K., & Garver, J. I. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8), 985-1009.
Chi, W.-R., Suppe, J., & Namson, J. (1981). Stratigraphic record of plate interactions in Coastal Range, eastern Taiwan. (4), 491-530. Retrieved from http://ntur.lib.ntu.edu.tw/handle/246246/206143.
Chou, J.-T. (1973). Sedimentology and paleogeography of the upper Cenozoic system of western Taiwan. Paper presented at the Proc. Geol. Soc. China.
Covey, M. (1984). Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petroleum Geology of Taiwan, 20, 53-83.
Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), 259-274.
Dunkl, I. (2002). TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3-12.
Fleischer, R. L., Price, P. B., Walker, R. M., & Walker, R. M. (1975). Nuclear tracks in solids: principles and applications: Univ of California Press.
Garver, J. I., & Brandon, M. T. (1994). Erosional denudation of the British Columbia Coast Ranges as determined from fission-track ages of detrital zircon from the Tofino basin, Olympic Peninsula, Washington. Geological Society of America Bulletin, 106(11), 1398-1412.
Garver, J. I., Brandon, M. T., Roden-Tice, M., & Kamp, P. J. (1999). Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geological Society, London, Special Publications, 154(1), 283-304.
Gleadow, A., Hurford, A., & Quaife, R. (1976). Fission track dating of zircon: improved etching techniques. Earth and planetary science letters, 33(2), 273-276.
Green, P. (1981). A new look at statistics in fission-track dating. Nuclear tracks, 5(1-2), 77-86.
Heller, P. L., Tabor, R. W., O'NEIL, J. R., Pevear, D. R., Shafiqullah, M., & Winslow, N. S. (1992). Isotopic provenance of Paleogene sandstones from the accretionary core of the Olympic Mountains, Washington. Geological Society of America Bulletin, 104(2), 140-153.
Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P. B., Lin, C.-W., & Xia, K.-Y. (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1-2), 31-51.
Huang, C.-Y., Yuan, P. B., & Tsao, S.-J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288.
Hurford, A., Fitch, F., & Clarke, A. (1984). Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geological Magazine, 121(4), 269-277.
Hurford, A. J., & Green, P. F. (1982). A users' guide to fission track dating calibration. Earth and Planetary Science Letters, 59(2), 343-354.
Lee, Y.-H., Byrne, T., Wang, W.-H., Lo, W., Rau, R.-J., & Lu, H.-Y. (2015). Simultaneous mountain building in the Taiwan orogenic belt. Geology, 43(5), 451-454. doi:10.1130/g36373.1
Lin, A., & Watts, A. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9), ETG 2-1-ETG 2-19.
Mesalles, L., Mouthereau, F., Bernet, M., Chang, C.-P., Tien-Shun Lin, A., Fillon, C., & Sengelen, X. (2014). From submarine continental accretion to arc-continent orogenic evolution: The thermal record in southern Taiwan. Geology, 42(10), 907-910.
Mezger, K., & Krogstad, E. (1997). Interpretation of discordant U‐Pb zircon ages: An evaluation. Journal of metamorphic Geology, 15(1), 127-140.
Price, P., & Walker, R. (1962). Observation of fossil particle tracks in natural micas. Nature, 196(4856), 732-734.
Reimer, G., Storzer, D., & Wagner, G. (1970). Geometry factor in fission track counting. Earth and Planetary Science Letters, 9(5), 401-404.
Seward, D., & Rhoades, D. (1986). A clustering technique for fission track dating of fully to partially annealed minerals and other non-unique populations. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 11(4-5), 259-268.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6), 67-89.
Teng, L. S. (1987). Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Yánjiū bàogào-Guólì Táiwān dàxué. Lǐxuéyuàn dìzhìxué xì(25), 205-224.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
Teng, L. S., & Lin, A. T. (2004). Cenozoic tectonics of the China continental margin: insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313-332.
Vermeesch, P. (2004). How many grains are needed for a provenance study? Earth and Planetary Science Letters, 224(3-4), 441-451.
Wagner, G. (1981). Fission-track ages and their geological interpretation. Nuclear Tracks, 5(1-2), 15-25.
Wagner, G. A. (1972). GEOLOGICAL INTERPRETATION OF FISSION TRACK AGES. Trans. Amer. Nucl. Soc. 15: No. 1, 117 (Jun 1972). Medium: X 2009-2012-2015. Retrieved from https://www.osti.gov/biblio/4702279.
Wolf, R., Farley, K., & Silver, L. (1996). Helium diffusion and low-temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60(21), 4231-4240.
Yang, K.-M., Huang, S.-T., Wu, J.-C., Ting, H.-H., & Mei, W.-W. (2006). Review and new insights on foreland tectonics in western Taiwan. International Geology Review, 48(10), 910-941.
Yang, K.-M., Wu, J.-C., Cheng, E.-W., Chen, Y.-R., Huang, W.-C., Tsai, C.-C., . . . Ting, H.-H. (2014). Development of tectonostratigraphy in distal part of foreland basin in southwestern Taiwan. Journal of Asian Earth Sciences, 88, 98-115.
Yokoyama, K., Tsutsumi, Y., Lee, C.-S., Shen, J., Lan, C.-Y., & Zhao, L. (2007). Provenance study of tertiary sandstones from the Western foothills and Hsuehshan Range, Taiwan. Bulletin of the National Museum of Nature and Science Serial C, 33, 7-26.
Yu, H.-S., & Chou, Y.-W. (2001). Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333(1-2), 277-291.
Zaun, P., & Wagner, G. (1985). Fission-track stability in zircons under geological conditions. Nuclear Tracks and Radiation Measurements (1982), 10(3), 303-307.