簡易檢索 / 詳目顯示

研究生: 陳偉豪
Chen, Wei-Hao
論文名稱: 藉由光學技術測量氣泡粒徑分佈和體積分率
Measurements of bubble size distributions and void fraction with an optical technique
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 41
中文關鍵詞: 氣泡粒徑影像法體積分率氣泡單位體積密度
外文關鍵詞: bubble size distributions, bubble density, optical system, photographic method
相關次數: 點閱:69下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨是以實驗方法探討氣泡的特性,藉由量測影像技術,以高速攝影機拍攝水中氣泡上升的過程,並利用影像處理進行分析,可計算出氣泡之粒徑大小、數量、體積分率及單位體積密度。本實驗在成功大學水利及海洋工程學系光纖感測及聲學實驗室之玻璃纖維水槽,將發泡器材沉入水槽底部,實驗過程中,利用空氣壓縮機輸入穩定的空氣至氣泡石軟管及陶瓷氣泡石,待氣泡穩定的從水槽底部緩慢上升一段時間,以高速攝影機每秒拍攝30張影像,記錄其上升過程,影像儲存於電腦。實驗結果發現,在低孔隙率情況下,氣泡較分散且容易判斷其粒徑大小及體積,而在高孔隙率情況下,因氣泡會互相撞擊、結合及分裂等情形,其重疊率高導致分析上容易出錯。本研究所得之實驗結果適用於低孔隙率情況,較不適用於高孔隙率。

    This study aims to analyze the bubble size distribution by using the high-resolution CCD camera. The experimental setup consists of a high-resolution CCD camera, a light source, a air-bubble generator, and an air compressor. The high-quality digital images of bubbles were analyzed to obtain the characteristics of bubbles. Our study reveals that when the air volume fraction of the bubbly water is low, the proposed method can obtain accurate size distribution of bubbles. However, when the air volume fraction is high, overlapping of bubbles occurs, which makes the identification of individual bubble difficult. As a result, the obtained size distribution of bubbles may be inaccurate.

    第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 本文架構 6 第二章 基本理論 7 2-1 影像分析基礎 7 2-1-1 彩色影像 7 2-1-2 座標系統 7 2-1-3 影像分類 8 (a) RGB影像 8 (b) 灰階影像 8 (c) 二元影像 9 2-2 影像分析原理 9 第三章 實驗設置與圖片分析 12 3-1 儀器介紹 13 3-1-1 實驗流程 18 3-2 實驗配置 20 3-3 圖片分析流程 21 3-3-1 分析流程 21 3-3-2 門檻值 22 3-3-3 計算氣泡之面積 26 第四章 結果與討論 27 4-1 比較氣泡分析方法 27 4-2 三種器材之氣泡數量分析 29 4-2-1 同器材不同流量之氣泡粒徑結果分析 30 (a) 氣泡石軟管長度45 cm、120 cm 30 (b) 陶瓷器泡石 31 4-2-2 不同器材同流量之氣泡粒徑結果分析 32 4-3 體積分率 33 4-3-1 氣泡單位體積密度分佈 34 4-4 氣泡粒徑應用 36 第五章 結論與建議 37 5-1 結論 37 5-2 建議 38 參考文獻 39

    1.Buwa, V.V., Ranade, V.V., “Dynamics of gas–liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations,” Chem. Eng. Sci.57, pp.4715–4736, 2002.
    2.Bröder, D. and Sommerfeld, M. “Planar shadow image velocimetry for the analysis of the hydrodynamics in bubbly flows,” Meas. Sci. Technol. 18, pp.2513–2528, 2007.
    3.Farmer, D. M., Vagel, S. and Booth, A. D. “A free flooding acoustical resonator for measurement of bubble size distributions,” J. Atmospheric Oceanic Technol., 1998.
    4.Glotov, V. P., Kolobaev, P. A. and Neuimin, G. G. “Investigation of scattering of sound by bubbles generated by an artificial wind in sea water and the statistical distribution of bubble sizes,” Sov. Phys. Acoust., Engl. Transl., 7, pp. 341-345, 1962.
    5.Johnson, B. D., and R. C. Cooke. “Bubble populations and spectra in coastal waters: A photographic approach,” Journal of Geophysical Research. Res. 84(C7), pp. 3761-3766, 1979.
    6.J¨ahne, B. and Geißler, P. “An imaging optical technique for bubble measurements,” in Sea Surface Sound ’94, M. J. Buckingham and J. R.Potter, Eds. World Scientific, pp. 290–303, 1994.
    7.J¨ahne, B. and Monahan, E. C. “Measurements of bubble size distributions with an optical technique based on depth from focus,” in Air–Water Gas Transfer, Eds. Hanau: AEON Verlag and Studio, pp. 351–362, 1995.
    8.Kolovayev, P. “Investigation of the concentration and statistical size distribution of wind produced bubbles in the near-surface ocean layer,” Oceanology(15): pp. 659-661, 1976.
    9.Leighton, T. G., Phelps, A. D. and Ramble, D. G. “Acoustic bubble sizing: From the laboratory to surf zone trials,” Acoustics Bull., pp. 5–9, May/June 1996.
    10.Leighton, T. G. “The Acoustic Bubble,” San Diego, CA: Academic, pp. 613, 1994.
    11.Medwin, H. “In situ acoustic measurements of bubble populations in coastal ocean waters,” J. Geophys. Res., 75, pp.599-611, 1970.
    12.Medwin, H. “In situ acoustic measurements of microbubbles at sea,” J.Geophys. Res., 82, pp. 971-975, 1977.
    13.Polli, M., Stanislao, M., Bagatin, R., Abu Bakr, E. “Bubble size distribution in the sparger region of bubble columns,” Chem. Eng. Sci. 57, pp. 197–205, 2002.
    14.Rodrigues, R.T., Rubio, J. “New basis for measuring the size distribution of bubbles,” Minerals Engineering 16, pp. 757 – 765, 2003.
    15.Su, M.-Y. , Todoroff, D. and Cartmill, J. “Laboratory comparisons of acoustic and optical sensors for microbubble measurement,” J. Atmo.and Oceanic Technol., vol. 11, pp. 170–181, 1994.
    16.Stokes, M. and G. Deane. “A new optical instrument for the study of bubbles at high void fractions within breaking waves,” Oceanic Engineering, IEEE Journal of 24(3): pp. 300-311, 1999.
    17.Terrill , E. and Melville, W. K. “Sound-speed measurements in the surface-wave layer,” J. Acoust. Soc. Amer., vol. 102, pp. 2607–2625,1997.
    18.Walsh, A. L. and P. J. Mulhearn, P. J. “Photographic measurements of bubble populations from breaking wind waves at sea,” J. Geophys. Res., vol.92, pp. 14533–14565, 1987.
    19.黃奇鍊,二氧化碳氣泡粒徑在水中衰減特性之實驗研究,國立成功大學水利及海洋工程研究所碩士論文,2012。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE