| 研究生: |
蔡秉穎 Tsai, Ping-Ying |
|---|---|
| 論文名稱: |
史特靈引擎結合平焰燃燒器驅動之小型發電系統:二甲醚混氨之效能分析 Stirling Engine Driven Small-scale Power Generation System Integrated with Flat Flame Burner: Performance Analysis of Dimethyl Ether Mixed with Ammonia |
| 指導教授: |
吳志勇
Wu, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 平焰燃燒器 、史特靈引擎 、小型發電系統 、二甲醚 、氨氣 |
| 外文關鍵詞: | Flat-flame burner, Stirling engine, Micro power generation system, Dimethyl ether, Ammonia |
| 相關次數: | 點閱:53 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將探討創新之平焰燃燒器結合 γ 型史特靈引擎,同時與小型發電系統進行整合,並以二甲醚作為主要之載體燃料,搭配不同比例之氨氣與空氣混合後進入燃燒器,燃料/空氣之當量比固定為 0.7,而系統之輸入功率與氨氣比例則為本研究之主要操作條件,並探討後續系統輸出之相關參數。測試結果表明,在輸入功率 2000W,氨氣比例 0%之條件下,輸出之電功率為 32.3W,熱電效率約為 1.61%,而在同樣氨氣比例下,將輸入功率降低至 1700W,輸出之電功率雖降低為 29W,但其熱電效率可提升至 1.7%,此外,藉由排放物測試之結果可發現,在相同輸入功率之情況下,平均而言,EICO、EICO2及 EINOx 皆隨著氨氣混合比例增加呈逐步降低之趨勢,而隨著輸入功率增加,EINOx 亦隨之上升,EICO 則逐漸下降;在燃燒效率方面,各種條件下之燃燒效率皆達 98.4%以上,整體而言,給予系統更高之輸入功率,其燃燒效率亦隨之提升,該系統之最高燃燒效率可達 99.13%。
In this study, the innovative flat-flame burner is combined with a γ-type Stirling engine and integrated with a samll-generation system. DME is used as the main carrier fuel, ammonia and air are mixed with different ratios to enter the burner, and the fuel/air equivalent ratio is fixed at 0.7, while the input power and ammonia ratio of the system are the main operating conditions in this study in order to explore the parameters of the output of the system in the subsequent study. The test results show that under the condition of 2000W input power and 0% ammonia ratio, the output power is 32.3W and the thermal to electric efficiency is about 1.61%, while under the same ammonia ratio, reducing the input power to 1700W, the output power is reduced to 29W, but the thermal to electric efficiency can be increased to 1.7%. In addition, through the emission test results, it can be found that under the same input power, on average, EICO, EICO2 and EINOx show a decreasing trend with the increase of ammonia mixing ratio, and with the increase of the input power, EINOx also rises, and EICO gradually decreases. In terms of combustion efficiency, the combustion efficiency under various conditions reaches more than 98.4%. Overall, given a higher input power to the system, its combustion efficiency also increases. The maximum combustion efficiency of the system can reach 99.13%.
[1] Veras, T. D., T. S. Mozer, D. dos Santos and A. D. César, "Hydrogen: Trends, production and characterization of the main process worldwide." International Journal of Hydrogen Energy, (2017). 42(4): 2018-2033.
[2] M.T. Tolmasquim, A. Guerreiro, R. Gorini, "Matriz energética brasileira: uma prospectiva." Novos Estudos – CEBRAP, (2007). 79: 47-69.
[3] Sims R, Mercado P, Krewitt W et al, "Integration of Renewable Energy into Present and Future Energy Systems." Cambridge University Press, (2011). 8: 609-706.
[4] Huang, H. Z., J. Z. Zhao, X. Y. Guo, B. J. Deng, Y. J. Chen and X. D. Huang, "Study on reducing carbon dioxide and harmful emissions of diesel-ignited natural gas engine." Chemosphere, (2022). 306: 11.
[5] Balasubramanian, K. and K. Purushothaman, "Effect of acetylene addition on performance, emission and combustion characteristics of neem biodiesel and corn biodiesel-fueled CI engine." Journal of Thermal Analysis and Calorimetry, (2019). 138(2): 1405-1414.
[6] Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., Petrenko, Y, "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review." Energies, (2021). 14(24): 8240.
[7] Ahmad, T. and D. D. Zhang, "A critical review of comparative global historical energy consumption and future demand: The story told so far." Energy Reports, (2020). 6: 1973-1991.
[8] Kabeyi, M. J. B. and O. A. Olanrewaju, "Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply." Frontiers in Energy Research, (2022). 9: 45. Kaygusuz, K, "Energy for sustainable development: A case of developing countries.
[9] Kaygusuz, K, " Energy for sustainable development: A case of developing countries." Renewable & Sustainable Energy Reviews, (2012). 16(2): 1116-1126.
[10] Banerjee, A. and D. Paul, "Developments and applications of porous medium combustion: A recent review." Energy, (2021). 221: 12.
[11] Mujeebu, M. A., M. Z. Abdullah, M. Z. Abu Bakar, A. A. Mohamad, R. M. N. Muhad and M. K. Abdullah, "Combustion in porous media and its applications - A comprehensive survey." Journal of Environmental Management, (2009). 90(8): 2287-2312.
[12] Li, D. and M. Ihme, "Stability diagram and blow-out mechanisms of turbulent non-premixed combustion." Proceedings of the Combustion Institute, (2021). 38(4): 6337-6344.
[13] Rocha R. C, Zhong S, Xu L, Bai X. S, Costa M, Cai X, Kim H, Brackmann C, Li Z, Aldén. M, "Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio." Energy Fuels, (2021). 35(9): 7179-7192.
[14] Neuberger, J. M, "The construction of a flat flame burner and measurement of adiabatic flame speed." The University of Arizona, (1965). p: 1-10.
[15] Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T., & Ando, H., "Development of Gasoline Direct Injection Engine." SAE Transactions, (1997). 106: 777–793.
[16] Omari, A., Pischinger, S., Bhardwaj, O. P., Holderbaum, B., Nuottimäki, J., & Honkanen, M, "Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications." SAE International Journal of Fuels and Lubricants, (2017). 10(3): 756–767.
[17] Krishnamoorthi, M., R. Malayalamurthi, Z. X. He and S. Kandasamy, "A review on low temperature combustion engines: Performance,combustion and emission characteristics." Renewable & Sustainable Energy Reviews, (2019). 116: 53.
[18] Jhalani, A., D. Sharma, P. K. Sharma, D. Singh, S. Jhalani and J. P. Dubey, "A Comprehensive Review on Low-Temperature Combustion Technologies for Emission Reduction in Diesel Engines." International Journal of Automotive and Mechanical Engineering, (2021). 18(4): 9230-9243.
[19] Singh, A. P. and A. K. Agarwal, "Low-Temperature Combustion: An Advanced Technology for Internal Combustion Engines." Advances in Internal Combustion Engine Research, (2018). p: 9-41.
[20] Paul Breeze, "Fuels and Energy Resources for Reciprocating Engines." Piston Engine-Based Power Plants, (2018). 2: 13-20.
[21] Aakko-Saksa, P. T., K. Lehtoranta, N. Kuittinen, A. Järvinen, J. P. Jalkanen, K. Johnson, H. Jung, L. Ntziachristos, S. Gagné, C. Takahashi, P. Karjalainen, T. Rönkkö and H. Timonen, "Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options." Progress in Energy and Combustion Science, (2023). 94: 26.
[22] Qiu, S. G., Y. Gao, G. Rinker and K. Yanaga, "Development of an advanced free-piston Stirling engine for micro combined heating and power application." Applied Energy, (2019). 235: 987-1000.
[23] Chen, W. L., G. M. D. Currao, C. Y. Wu, B. Evan, C. Y. Mao, S. W. Tsai and C. Y. Yu, "A Study on an Unpressurized Medium-Temperature-Differential Stirling Engine Integrated with a New Spiral- Patterned Flat-Flame Burner and a New Spiral-Finned Hot-End Plate." International Journal of Energy Research, (2023). 2023: 20.
[24] Kim, Y. M., W. G. Chun and K. Chen, "Thermal-Flow Analysis of a Simple LTD (Low-Temperature-Differential) Heat Engine." Energies, (2017). 10(4): 16.
[25] Brunetti, A., M. Migliori, D. Cozza, E. Catizzone, G. Giordano and G. Barbieri, "Methanol Conversion to Dimethyl Ether in Catalytic Zeolite Membrane Reactors." Acs Sustainable Chemistry & Engineering, (2020). 8(28): 10471-10479.
[26] R. P, Verbeek., A. van Doom, "Global assessment of Dimethyl-ether as an automotive fuel." TNO Road-Vehicles Research Institute, (1996). p: 13-19.
[27] Stepanenko, D., Kneba, Z, "DME as alternative fuel for compression ignition engines – a review." Combustion Engines, (2019). 177(2): 172-179.
[28] Huang, Z. H., Q. Wang, J. R. Yu, Y. Zhang, K. Zeng, H. Y. Miao and D. M. Jiang, "Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures." Fuel, (2007). 86(15): 2360-2366.
[29] Iuga, C., L. Osnaya-Soto, E. Ortiz and A. Vivier-Bunge, "Atmospheric oxidation of methyl and ethyl tert-butyl ethers initiated by hydroxyl radicals. A quantum chemistry study." Fuel, (2015). 159: 269-279.
[30] Arcoumanis, C., Bae, C., Crookes, R. & Kinoshita, E,. "The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: A review." Fuel, (2008). 87(7): 1014-1030.
[31] Hansen, K. R., Pedersen, T. D., & Schramm, J, "Development of HCCI Engines for Dimethyl Ether." DTU Mechanical Engineering, (2011).
[32] Van Antwerpen, J., M. H. A. Khan, J. Shepherd, T. H. Tan, S. Grundy, I. Macgill, R. Amal and R. Daiyan, "A model for assessing pathways to integrate intermittent renewable energy for e-methanol production." International Journal of Hydrogen Energy, (2023). 48(78): 30221-30237.
[33] Bozzano, G. and F. Manenti, "Efficient methanol synthesis: Perspectives, technologies and optimization strategies." Progress in Energy and Combustion Science, (2016). 56: 71-105.
[34] Hansen, J., Voss, B., Joensen, F., and Siguroardóttir, I, "Large Scale Manufacture of Dimethyl Ether - a New Alternative Diesel Fuel from Natural Gas." SAE Technical Paper, (1995). 950063: 12
[35] Dawood, F., M. Anda and G. M. Shafiullah, "Hydrogen production for energy: An overview." International Journal of Hydrogen Energy, (2020). 45(7): 3847-3869.
[36] Giddey, S., S. P. S. Badwal, C. Munnings and M. Dolan, "Ammonia as a Renewable Energy Transportation Media." Acs Sustainable Chemistry & Engineering, (2017). 5(11): 10231-10239.
[37] Chiong, M. C., C. T. Chong, J. H. Ng, S. Mashruk, W. W. F. Chong, N. A. Samiran, G. R. Mong and A. Valera-Medina, "Advancements of combustion technologies in the ammonia-fuelled engines." Energy Conversion and Management, (2021). 244: 17.
[38] Juangsa, F. B., A. R. Irhamna and M. Aziz, "Production of ammonia as potential hydrogen carrier: Review on thermochemical andelectrochemical processes." International Journal of Hydrogen Energy, (2021). 46(27): 14455-14477.
[39] Kobayashi, H., A. Hayakawa, K. Somarathne and E. C. Okafor, "Science and technology of ammonia combustion." Proceedings of the Combustion Institute, (2019). 37(1): 109-133.
[40] Vance, F. H., Y. Shoshin, L. P. H. de Goey and J. A. van Oijen, "Quantifying the impact of heat loss, stretch and preferential diffusion effects to the anchoring of bluff body stabilized premixed flames." Combustion and Flame, (2022). 237: 11.
[41] Botha J. P. and Spalding Dudley Brian, "The laminar flame speed of propane/air mixtures with heat extraction from the flame." Royal Society, (1954). 225(1160): 71–96.
[42] J. F. Yu, R. Yu, X.Q. Fan, M. Christensen, A.A. Konnov, X.S. Bai,"Onset of cellular flame instability in adiabatic CH4/O2/CO2 and CH4/air laminar premixed flames stabilized on a flat-flame burner." Combustion and Flame, (2013). 160(7): 1276-1286.
[43] Meng, Q. H., C. Banyon, A. L. Kastengren, M. S. Wooldridge and R. S. Tranter, "Experimental measurement of the rapid mixing of fuel and air in a multi-element diffusion (Hencken) burner." Combustion and Flame, (2023). 251: 7.
[44] Wooldridge, M. S., P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer and C. R. Schrock, "An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner." Combustion and Flame, (2002). 131(1-2): 98-109.
[45] Migliorini, F., S. de Iuliis, F. Cignoli and G. Zizak, "How "flat" is the rich premixed flame produced by your McKenna burner?" Combustion and Flame, (2008). 153(3): 384-393.
[46] Eremin, A. V., E. V. Gurentsov, R. N. Kolotushkin and E. Y. Mikheyeva, "Dependence of Soot Primary Particle Size on the Height above a Burner in Target Ethylene/air Premixed Flame." Combustion Science and Technology, (2022). 194(14): 2847-2863.
[47] Ghazi, R., H. Tjong, A. Soewono, S. N. Rogak and J. S. Olfert, "Mass, Mobility, Volatility, and Morphology of Soot Particles Generated by a McKenna and Inverted Burner." Aerosol Science and Technology, (2013). 47(4): 395-40.
[48] Robert, H, D & Jochen, M, "The Stirling cycle and Carnot’s theorem." European Physical Society, (2019). 40: 65-103.
[49] Invernizzi, C. M., "Stirling engines using working fluids with strong real gas effects." Applied Thermal Engineering, (2010). 30(13): 1703-1710.
[50] Ivan, C, O & Frederick, R, R, "Evaluation of potential military applications of stirling engines." Defense for Acquisition, (1988).
[51] Lawrence, C, H & Worth, H, P, "A Technology Evaluation of the Stirling Engine for Stationary Power Generation in the 500 to 2000 Horsepower Range" U.S. Department of Energy. (1978).
[52] Stine, W. B., "Stirling Engines." Energy Conversion, (1999). 8: 67.
[53] Kongtragool, B. and S. Wongwises, "A review of solar-powered Stirling engines and low temperature differential Stirling engines." Renewable & Sustainable Energy Reviews, (2003). 7(2): 131-154.
[54] Aitziber, J. A., "Testing and Optimization of the performance of a Stirling engine." Hochschule Osnabrück, (2013). 2(2): 36-37.
[55] Djetel, S., Bégot, S., Lanzetta, F., Gavignet, E., & Bou Nader, W.S. "A Stirling Engine for Automotive Applications." IEEE Vehicle Power and Propulsion Conference, (2017). pp: 1-6.
[56] Al-Sayyab, A. K. S., A. Mota-Babiloni and J. Navarro-Esbrí, "Renewable and waste heat applications for heating, cooling, and power generation based on advanced configurations." Energy Conversion and Management, (2023). 291: 26.
[57] Kazda, K & Li, X. "A Critical Review of the Modeling and Optimization of Combined Heat and Power Dispatch." Processes, (2020). 8(4): 441.
[58] De Paepe, M., P. D'Herdt and D. Mertens, "Micro-CHP systems for residential applications." Energy Conversion and Management, (2006). 47(18-19): 3435-3446.
[59] Harrison, J. & On, E. "Stirling engine systems for small and micro combined heat and power (CHP) applications." Small and Micro Combined Heat and Power (CHP) Systems, (2011). pp: 179-205.
[60] Mundada, A. S., K. K. Shah and J. M. Pearce, "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems." Renewable & Sustainable Energy Reviews, (2016). 57: 692-703.
[61] Robert, W, S., Christopher, W and Jay, K, "Lean hydrogen combustion." Lean Combustion, (2008). 8: 213-254.
[62] Huang, H. D. & W. L. Chen, "Development of a compact simple unpressurized Watt-level low-temperature-differential Stirling engine." International Journal of Energy Research, (2020). 44(14): 12029-12044.
[63] Wu, C. Y., G. M. D. Currao, W. L. Chen, C. Y. Chang, B. Y. Hu, T. H. Wang and Y. C. Chen, "The application of an innovative integrated Swiss-roll-combustor/Stirling-hot-end component on an unpressurized Stirling engine." Energy Conversion and Management, (2021). 249: 12.
[64] Stephen, R, T, "An Introduction to Combustion: Concepts and Applications." Mac Graw hill Publication, (1996). 15: 550-555.
[65] Ibrahim, D & Marc, A, R, "Exergy." Elsevier Science, (2013). 3: 31-49.
[66] Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications." NASA Reference Publication 1311, (1996). 2(2): 3-25.
[67] Kang, Y. H., X. F. Lu, Q. H. Wang, L. Gan, X. Y. Ji, H. Wang, Q. Guo, D. C. Song and P. Y. Ji, "Effect of H2 addition on combustion characteristics of dimethyl ether jet diffusion flame." Energy Conversion and Management, (2015). 89: 735-748.