簡易檢索 / 詳目顯示

研究生: 黃鈺雯
Huang, Yu-Wen
論文名稱: 蘚類植物開花基因PpLFY 1 的分子演化研究
Molecular Evolution of the flowering gene, PpLFY1, in mosses
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物多樣性研究所
Institute of Biodiversity
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 91
中文關鍵詞: 天擇分子演化苔蘚開花基因分子時鐘
外文關鍵詞: MADS-box, negative selection, evolution, PpLFY, moss
相關次數: 點閱:164下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   開花是植物重要的發育過程,關係到植物是否能成功繁衍後代。這樣的過程主要是受到MADS-box基因群所調控,LEAFY (LFY)基因即隸屬於此基因家族。開花植物FLO/LFY基因主要功能為決定頂端分生組織是否分化為花部構造,然而在蘚類植物當中,FLO/LFY基因共有兩個重複:PpLFY1、PpLFY2,其功能為決定合子細胞是否分化。顯見開花植物與蘚類植物的FLO/LFY基因在功能上有所分化,因此本研究主要探討蘚類植物PpLFY1基因在演化歷史中所受的天擇效應。研究結果顯示,藉由親緣關係樹分析,得知蘚類植物PpLFY1基因可分為三個基因型,發現在頂蒴型及側蒴型蘚類植物中擁有不同的基因型。根據前人研究,蘚類植物分化時間為402-432百萬年前,利用分子時鐘的計算,發現蘚類植物LFY基因早在608-653百萬年前就已存在,顯示PpLFY1基因早在蘚類植物分化前就已存在在植物體中。另外根據天擇測驗分析結果,蘚類植物PpLFY1基因Tajima’s D值呈現負值但不顯著;但其Ka/Ks及dn/ds值皆小於1,顯示蘚類植物PpLFY1基因受到負向天擇作用。利用PAML程式檢測各氨基酸位置所受天擇影響,顯示此基因片段在每個氨基酸位置受到不同天擇力量作用,大多數位置為中性選汰,少數位置受負向天擇作用。顯示此基因片段十分保守。

     Flowering is one of the important developmental processes of plants because it is directly related to reproductive success. MADS-box gene family in plants control various aspects of development and reproductive processes including floral formation, LEAFY (LFY) belong to the MADS-box gene. In flowering plant, LEAFY gene determines the transition from the vegetative to the reproductive phase, as LEAFY is both necessary and sufficient for the initiation of individual flowers. In contrast, FLO/LFY genes regulate the first cell division after the formation of zygote in mosses. This study examined the mode of natural selection and effects of other evolutionary forces that shared the evolution of the moss FLO/LFY gene, PpLFY 1. In the PpLFY 1 gene, three lineages were identified in acrocarpous and pleurocarpus mosses. Molecular dating revealed that the PpLFY 1 gene has long existed in mosses about 608-653 MYA, predating the divergence of mosses. Both Ka/Ks and dn/ds ratio are less than 1, revealing that PpLFY 1 gene is under negative selection in mosses, although the Tajima’s d values are mostly nonsignificantly negative. PAML analysis also detected different modes of natural selection along each amino acid sites.

    誌謝...........................................................i 中文摘要......................................................ii 英文摘要.....................................................iii 目錄..........................................................iv 表目錄.........................................................v 圖目錄.........................................................vi 第壹章 前言....................................................1 一、基因的演化.................................................1 二、開花基因...................................................9 三、LFY 基因...................................................12 四、研究材料的選用.............................................17 五、研究目的...................................................21 第貳章 材料與方法..............................................22 一、研究材料...................................................22 二、實驗方法...................................................23 第參章 結果....................................................28 一、蘚類植物PpLFY1 基因座部分片段..............................28 二、蘚類植物PpLFY1 基因座分段遺傳變異特性......................31 第肆章 討論....................................................34 一、蘚類植物PpLFY1 基因座部分片段的遺傳變異....................34 二、蘚類植物PpLFY1 基因座所受天擇效應探討..................... 41 第伍章結論.....................................................47 第陸章參考文獻.................................................48 表.............................................................66 圖.............................................................76

    吳鵬程 1998. 苔蘚植物生物學。科學出版社。 北京。
    蔣鎮宇、牟善傑、許再文、陳建志 2000. 臺灣苔類植物彩色圖鑑。行政院農業委員會。台北市。
    Alvarez-Buylla, E. R., S. J. Liljegren, S. Pelaz, S. E. Gold, C. Burgeff, G. S. Ditta, F. Vergara-Silva, and M. F. Yanofsky. 2000a. MADS gene evolution beyond flowers, expression in pollen, endosperm, guard cells, roots, and trichomes. The Plant Journal : for cell and molecular biology 24:457-466.
    Alvarez-Buylla, E. R., S. Pelaz, S. J. Liljegren, S. E. Gold, C. Burgeff, G. S. Ditta, L. Ribas de Pouplana, L. Martinez-Castilla, and M. F. Yanofsky. 2000b. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences of the United States of America 97:5328-5333.
    Angenent, G. C., and L. Colombo. 1996. Molecular control of ovule development . Trends in Plant Science 1:228-232.
    Becker, A., K. U. Winter, B. Meyer, H. Saedler, and G. Theissen. 2000. MADS gene diversity in seed plants 300 million years ago. Molecular Biology and Evolution 17:1425-1434.
    Beckert, S., S. Steinhauser, H. Muhle, and V. Knoop. 1999. A molecular phylogeny of the bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Plant Systematics and Evolution 218:179-192.
    Blazquez, M. A.,L. Soowal, I. Lee, and D. Weigel. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124:3835-3844.
    Blomquist, H. L., and L. L. Rovertson. 1941. The development of the peristome in Aulacomnium heterostichum. Bulletin of the Torrey Botanical Club 68:569-584.
    Bruch, P., W. P. Schimper, and T. Gumbel. 1851-1855. Bryologia Europaea seu Generum Muscorum Europaeorum Monographice Illustrata. Schweizerbart, Stuttgart, Germany.
    Buck, W. R., B. Goffinet, and A. J. Shaw. 2000. Testing morphological concepts of orders of pleurocarpous mosses (Bryophyta) using phylogenetic reconstructions based on trnL-trnF and rps4 sequences. Molecular Phylogenetics and Evolution 16:180-198.
    Capesius, I., and M. Stech. 1997. Molecular relationships within the mosses based on 18S rRNA gene sequences. Nova Hedwigia 64:525-533.
    Civetta, A., and R. S. Singh. 1998. Sex-related genes, directional selection, and speciation. Molecular Biology and Evolution 15:901-909.
    Coen, E. S., and E. M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31-37.
    Coen, E. S., J. M. Romero, S. Doyle, R. Elliott, G. Murphy, and R. Carpenter. 1990. Floricaula- a homeotic gene required for flower development in Antirrbinum majus. Cell 63:1311-1322.
    Cox, C. J., and T. A. Hedderson. 1999. Phylogenetic relationships among the ciliate arthrodontous mosses: evidence from chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 215:119-139.
    Cox, C. J., B. Goffinet, A. E. Newton, A. J. Shaw, and T. A. J. Hedderson. 2000. Phylogenetic relationships among the diplolepideous-alternate mosses (Bryidae) inferred from nuclear and chloroplast DNA sequences. The Bryologist 103:224-241.
    Crosby, M. R., R. E. Magill, B. Allen, and S. He. 2000. A Checklist of the Mosses. "Missouri Botanical Garden, St. Louis, Missouri, USA, web-site: www.mobot. org/MOBOT/tropicos/most/checklist.shtml."
    Curtis, C. F., L. M. Cook, and R. J. Wood. 1978. Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance on mosquitoes. Evol. Ent. 3:273-287.
    De Luna, E., A. E. Newton, A. Withey, D. Gonzalez, and B. D. Mishler. 1999. The transition to pleurocarpy: A phylogenetic analysis of the main Diplolepidous lineages based on rbcL sequences and morphology. The Bryologist 102:634-650.
    De Luna, E., W. R. Buck, H. Akyama, T. Arikawa, H. Tsobuta, D. Gonzalez, A. E. Newton, and A. J. Shaw. 2000. Phylogenetic patterns within the Hypnobryalean pleurocarpous mosses inferred from cladistic analyses of three sequence data sets: trnL-F, rps4 and rbcL. The Bryologist 103:242-256.
    Doyle, J. J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17:144-163.
    Crosby, M. R., R. E. Magill, B. Allen, and S. He. 2000. A checklist of the mosses. Missouri Botanical Garden, St. Louis, Missouri, USA, website: www.mobot.org/MOBOT/tropicos/most/checklist.shtml.
    Edwards, S. R. 1979. Taxonomic implications of cell patterns in haplolepidous moss peristomes. In G. C. S. Clarke and J G. Duckett [eds.], Bryophyte systematics, 317-346. Systematics Association Special Volume 14. Academic Press, New York, New York, USA.
    Evans, A. W., and H. D. Hooker, JR. 1913. Development of the peristome in Ceratodon purpureus. Bulletin of the Torrey Botanical Club 40:97-109.
    Ewens, W. J. 1972. The sampling theory of selectively neutral alleles. Theory of Population Biology 3: 87-112.
    Freder, M. E., A. F. Bennett, W. A. Burggren and R. B. Huey. 1987. New Directions in Ecological Physiology. Cambridge University Press, Cambridge.
    Frohlich, M. W. and D. S. Parker. 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany 25:155-170.
    Frohlich, M.W. and E. M. Meyerowitz. 1997. The search for flower homeotic gene homologs in basal angiosperms and gnetales: A potential new source of data on the evolutionary origin of flowers. International Journal of Plant Sciences 158:S131-S142.
    Frohlich, M. W. and G. F. Estabrook. 2000. Wilkinson support calculated with exact probabilities: an example using Floricaula/LEAFY amino acid sequences that compares three hypotheses involving gene gain/loss in seed plants. Molecular Biology and Evolution 17:1914-1925.
    Fu, Y.-X. 1995. Statistical properties of segregating sites. Theory of Population Biology 48:172-197.
    Fu, Y.-X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.
    Fu, Y.-X. and W.-H. Li. 1993. Statistical tests of neutrality of mutations. Genetics 133: 693-709.
    Futuyma, D. J. 1997. Evolutionary Biology (Third Edition). Sinauer associates, Inc. Sunderland, Massachuseatts.
    Gillespie, J. H. 1991. The Causes of Molecular Evolution. Oxford University Press, Oxford.
    Goffinet, B., and C. J. Cox. 2000. Phylogenetic relationships among basal-most arthrodontous mosses with special emphasis on the evolutionary significance of the Funariineae. The Bryologist 103:212-223.
    Goffinet, B., C. J. Cox, A. J. Shaw, and T. A. J. Hedderson. 2001. The bryophyte (Mosses): systematic and evolutionary inferences from an rps4 gene (cpDNA) phylogeny. Annals of Botany 87:191-208.
    Goffinet, B., R. J. Bayer, and D. H. Vitt. 1998. Circumscription and phylogeny of the Orthotrichales (Bryopsida) inferred from rbcL sequence analysis. American Journal of Botany 85:1324-1337.
    Goffinet, B., C. J. Cox, L. E. Anderson, and B. D. Mishler. 1999. Peristome development in the Orthotrichaceae. The Bryologist 102:581-594.
    Graur, D., and W.-H. Li. 2000. Fundamentals of Molecular Evolution (Second Edition). Sinauer associates,Inc., Sunderland, Massachusetts, USA.
    Gray, J. 1993. Major paleozoic land plant evolutionary bio-events. Palaeogeography, Palaeoclimatology, Palaeoecology 104:153-169.
    Grob, G. B. J., B. Gravendeel, and M. C. M. Eurlings. 2004. Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Molecular Phylogenetics and Evolution 30:13-23.
    Hartmann, U., S. Hohmann, K. Nettesheim, E. Wisman, H. Saedler, and P. Huijser. 2000. Molecular cloning of SVP, a negative regulator of the floral transition in Arabidopsis. The Plant Journal: for cell and molecular biology 21:351-360.
    Hasebe, M. 1999. Evolution of reproductive organs in land plants. Journal of Plant Research 112:463-474
    Hasebe, M. and M. Ito. 1999. Evolution of reproductive organs in vascular plants. The biology of biodiversity. Springer- Verlag, Tokyo, p.243-255.
    Hasebe, M., C.-K. Wen, M. Kato and J. A. Banks. 1998. Characterization of MADS homeotic genes in the fern ceratopteris richardii. Proceedings of the National Academy of Sciences of the United States of America 95:6222-6227.
    Hedderson, T. A., R. L. Chapman, and W. L. Rootes. 1996. Phylogenetic relationships of bryophytes inferred from nuclear-encoded rRNA gene sequences. Plant Systematics and Evolution 200:213-224.
    Hedwig, J. 1801. Species Muscorum frondosorum Descriptae et Tabulis Aeneid 1xxvii Colratis Illustratae. Barthii, Leipzig, Germany.
    Hempel, F. D., D. Weigel, M. A. Mandel, G. Ditta and P. Zambryski. 1997. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124:3845-3853.
    Himi, S., R. Sano, T. Nishiyama, T. Tanahashi, M. Kato, K. Ueda, and M. Hasebe. 2001. Evolution of MADS-box gene induction by FLO/LFY genes. Journal of Molecular Evolution 53:387-393
    Hoot, S. B., and W. C. Taylor. 2001. The untility of nuclear ITS, a LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation in Isoetes. American Fern Journal 91:166-177.
    Huala, H. and I. M. Sussex. 1992. LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. The Plant Cell 4:901-913.
    Hudson, R. R., M. Kreitman, and M. Aguade. 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116:153-159.
    Hughes, A. L., T. Ota, M. Nei. 1990. Positive Darwinian selectionpromotes charge profile diversity in the antigen-binding cleft of class I major histocompatibility complex genes in mammals. Molecular Biology and Evolution 7:491-514.
    Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. In: Munro HN(ed) Mammalian protein metabolism. Academic Press, New York, p.21.
    Kelly,A. J., M. B. Bonnlander, and D. R. Meeks-Wagner. 1995. NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. The Plant Cell 7:225-234.
    Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, Massachusetts.
    Kimura, M. 1968. Evolutionary rate at the molecular level. Nature 217:624-626.
    Kindberg, N. C. 1897. Genera of European and North American Bryineae (Mosses) Synoptically Disposed. Bonniers Boktryckeri Aktiebolag, Goteborg, Sweden.
    Kumar, P. S., K.Tamura, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis Software, Bioinformatics.
    Kyozuka, J., S. Konishi, K. Nemoto, T. Izawa, and K. Shimamoto. 1998. Down-regulation of RFL, the FLO/LFY homologue of rice, accompanied with panicle branch initiation. Proceedings of the National Academy of Sciences of the United States of America 95:1979-1982
    La Farge, C., B. D. Mishler, J. Wheeler, D. P. Wall, K. Johannes, S. Schaffer, and A. J. Shaw. 2000. Phylogenetic relationships within the Haplolepideous mosses. The Bryologist 103:257-276.
    Lee, H., S. S. Suh, E. Park, E. Cho, J. H. Ahn, S. G. Kim, J. S. Lee, Y. M. Kwon, and I. Lee. 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes and Development 14:2366-2376.
    Lee, Y. H., T. Ota, and V. D. Vacquier. 1995. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Molecular Biology and Evolution 12:231-238.
    Li, W. -H. 1997. Molecular evolution. Sinauer associates,Inc., Sunderland, Massachusetts, USA.
    Lin, J., A. H. d. Brown and M. T. Clegg. 2001. Heterogeneous geofraphic patterns of nucleotide sequence diversity between two alcohol dehydrogenease genes in wild barley (Hordeum vulgare subspecies sopntaneum). Proceedings of the National Academy of Sciences of the United States of America 98:531-536.
    Maizel, A., M. A. Busch, T. Tanahashi, J. Perkovic, M. Kato, M. Hasebe, and D. Weigel. 2005. The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308:260-263.
    Manhart, J. R. 1995. Chloroplast 16S rDNA sequences and phylogenetic relationships of fern allies and ferns. American Fern Journal 85:182-192.
    Mathews, S. and M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947-950.
    Mellerowicz, E. J., K. Horgan, A. Walden, A. Coker and C. Walter. 1998. PRFLL-a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta 206:619-629.
    Michaels, S. D. and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949-956.
    Mitten, W. 1859. Musci indiae orientalis. An enumeration of the mosses of the East Indies. Journal of the Proceeding s of the Linneaen Society (London), Supplement Botany 1:1-171.
    Miyata, T., and T. Yasunaga. 1980. Molecular evolution of mRNA: a method for estimation evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its applications. Journal of Molecular Evolution 16:23-36.
    Molinero-Rosales, N., M. Jamilena, S. Zurita, P. Gomez, J. Capel, and R. Lozano. 1999. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal : for cell and molecular biology 20:685-693.
    Montieri, S., L. Gaudio, and S. Aceto. 2004. Isolation of the LFY/FLO homologue in Orchis italica and evolutionary analysis in some European orchids. Gene 333:101-109.
    Mouradov, A., T. Glassick, B. Hamdorf, L. Murphy, B. Fowler, S. Marla and R. D. Teasdale. 1998. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proceedings of the National Academy of Sciences of the United States of America 95:6537-6542.
    Mouradov, A., B. Hamdorf, R. D. Teasdale, J. T. Kim, K.-U. Winter and G. Theissen. 1999. A DEF/GLO-like MADS-Box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Developmental Genetics 25:245-252.
    Munster, T., J. Pahnke, A. D. Rosa, J. T. Kim, W. Martin, H. Saedler and G. Theissen. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences of the United States of America 94:2415-2420.
    Murray, M. G. and Thompson, W. F. 1980. Rapid isolation of high molecular weight DNA. Nucleic Acids Research 8:4321-4325.
    Nam, J., C. W. dePamphilis, H. Ma and M. Nei. 2003. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Molecular Biology and Evolution 20:1435-1447.
    Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
    Nei, M., X. Gu, and T. Sitnikova. 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proceedings of the National Academy of Sciences of the United States of America 94:7766-7806.
    Nesi, N., I. Debeaujon, C. Jond, A. J. Stewart, G. I. Jenkins, M. Caboche, and L. Lepiniec. 2002. The TRANSPARENT TESTA 16 locus encodes the Arabidopsis Bsister MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463-2479.
    Newton, A. E., C. J. Cox, J. G. Duckett, J. Wheeler, B. Goffinet, T. A. J. Hedderson, and B. D. Mishler. 2000. Evolution of the major moss lineages. The Bryologist 103:187-211.
    Nilsson, O., I. Lee, M. A. Blazquez and D. Weigel. 1998. Flowering-time genes modulate the response to LEAFY activity. Genetics 150:403-410.
    Nishimoto, Y., O. Ohnish, and M. Hasegawa. 2003. Topological incongruence between nuclear and chloroplast DNA trees suggesting hybridization in the urophyllum group of the genus Fagopyrum (Polygonaceae). Genes and Genetic Systems 78:139-153.
    Oh, S.-H., and D. Potter. 2003. Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Molecular Phylogenetics and Evolution 29:203-215.
    Oh, S.-H., and D. Potter. 2005. Molecular phylogenetic sytematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY. American Journal of Botany 92:179-192.
    Ohta, T. 1993. A examination of the generation-time effect on molecular evolution. Proceedings of the National Academy of Sciences of the United States of America 90:10676-10680.
    Palumbi, S. R. 1994. Genetic divergence, reproductive isolation and marine speciation. Annual Review of Ecology and Systematics 25:547-572.
    Peeters, A. J. M. and M. Koornneef. 1996. Genetic variation of flowering time in Arabidopsis thaliana. Seminars in Cell and Developmental Biology 7:381-389
    Pelaz, S., G. S. Ditta, E. Baumann, E. Wisman and M. F. Yanofsky. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203.
    Pena, L., M. Martin-Trillo, J. A. Pina, L. Navarro and J. M. Martinez-Zapater. 2001. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in Citrus Reduces their generation time. Nature Biotechnology 19:263-267.
    Pryer, K. M., H. Schneider, A. R. Smith, R. Cranfill, P. G. Wolf, J. S. Hunt and S. D. Sipes. 2001. Horsetails and Ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618-622.
    Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen and M. W. Chase. 1999. The earliest angiosperms: evidence from mitochondorial, plastid and nuclear genomes. Nature 402:404-407.
    Quandt, D., S. Huttunen, H. Streimann, J. P. Frahm, and W. Frey. 2004. Molecular phylogenetics of the Meteoriaceae s. str.: focusing on the genera Meteorium and Papillaria. Molecular Phylogenetics and Evolution 32:435-461.
    Ridley, M. 2004. Evolution. Blackwell Publishing company, USA.
    Riechmann, J. L. and E. M. Meyerowitz. 1997. MADS domain proteins in plant development. Biological Chemistry 378:1079-1101.
    Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496-2497.
    Rutledge, R., S. Regan, O. Nicolas, P. Fobert, C. Cote, W. Bosnich, C. Kauffeldt, G. Sunohara, A. Seguin and D. Stewart. 1998. Characterization of an AGAMOUS homologue from the conifer Black Spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal : for cell and molecular biology 15:625-634.
    Sakakibara, K., T. Nishiyama, M. Kato and M. Hasebe. 2001. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Molecular Biology and Evolution 18:491-502.
    Sanger, F. G., Nickle, G. and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463-5467.
    Schultz, E. A. and G. W. Haughn. 1991. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. The Plant Cell 3:771-781.
    Schultz, E. A. and G. W. Haughn. 1993. Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119: 745-765.
    Sessions, A., M. F. Yanofsky and D. Weigel. 2000. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:799-781
    Shaw, A. J. 2000. Phylogeny of the Sphagnopsida based on nuclear and chloroplast DNA sequences. The Bryologist 103:277-306.
    Shaw, A. J., C. J. Cox, and S. B. Boles. 2003. Polarity of peatmoss (Sphagnum) evolution: who says Bryophytes have no roots? American Journal of Botany 90:1777-1787.
    Shaw, J. 1986. Peristome structure in the Orthotrichaceae. Journal of the Hattori Botanical Laboratory 60:119-136.
    Shaw, J., and L. E. Anderson. 1988. Peristome development in mosses in relation to systematics and evolution. II. Tetraphis pellucida (Tetraphidaceae). American Journal of Botany 75:1019-1032.
    Shaw, J., L. E. Anderson, and B. D. Mishler. 1987. Peristome development in mosses in relation to systematics and evolution. I. Diphyscium foliosum (Buxbaumiaceae). Memoirs of the New York Botanical Garden 45:55-70.
    Shaw, J., L. E. Anderson, and B. D. Mishler. 1989a. Peristome development in mosses in relation to systematics and evolution. III. Funaria hygrometrica, Bryum bicolor, and B. pseudocapillare. Systematic Botany 14:24-36.
    Shaw, J., L. E. Anderson, and B. D. Mishler. 1989b. Peristome development in mosses in relation to systematics and evolution. IV. Haplolepideae: Ditrichaceae and Dicranaceae. The Bryologist 92:314-25.
    Shaw, J., and K. Renzaglia. 2004. Phylogeny and diversification of bryophytes. American Journal of Botany 91:1557-1581.
    Shaw, J., and H. Robinson. 1984. The development, evolution, and function of peristomes in mosses. Journal of the Hattori Botanical Laboratory 57:319-335.
    Sheldon, C. C., P. P. Perez, J. Metzger, J. A. Edwards, W. J. Peacock, and E. S. Dennis. 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445-458.
    Shindo, S., M. Ito, K. Ueda, M. Kato and M. Hasebe. 1999. Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evolution and Development 1:180-190.
    Shore, P., and A. D. Sharrocks. 1995. The MADS-box family of transcription factors. European Journal of Biochemistry / FEBS 229:1-13 Mass.
    Simonsen, K. L., G. A. Churchill and C. F. Aquadro. 1995. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141: 413-429.
    Soltis, P., D. Soltis and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402-404.
    Strobeck, C. 1987. Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117: 49-153.
    Sundstrom, J., A. Carlsbecker, M. E. Svensson, M. Svenson, U. Johanson, G. Theissen and P. Engstrom. 1999. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-Class floral homeotic genes in angiosperms. Developmental Genetics 25:253-266.
    Tajima, F. 1983. Evolutionary relationship of DNA Sequences in finite populations. Genetics 105: 437-460.
    Tajima, F. 1989. Statistical method for resting the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
    Tanahashi, T., N. Sumikawa, M. Kato, and M. Hasebe. 2005. Diversification of gene function: homologs of the floral regulator FLO/LFY control th first zygotic cell division in the moss Physcomitrella patens. Development 132:1727-1736.
    Tandre, T., M. Svenson, M. E. Svensson and P. Engstrom. 1998. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. The Plant Journal : for cell and molecular biology 15:615-623.
    Telfer, A., K. M. Bollman and R. S. Poethig. 1997. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645-654.
    Theissen, G. 2001. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4:75-85.
    Theissen, G., A. Becker, A. Di Rosa, A. Kanno, J. T. Kim, T. Munster, K.-U. winter and H. Saedler. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42:115-149.
    Theissen, G., J. T. Kim and H. Saedler. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution 43:484-516.
    Theissen, G. and H. Saedler. 1995. MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law" revisited. Current Opinion in Genetics and Development 5:628-639.
    Thompson,J.D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24:4876-4882.
    Vacquier, V. D., W. J. Swanson, E. C. Metz, and C. D. Stout. 1999. Acrosomal proteins of abalone spermatozoa. Advances in Development Biochemistry 5:49-81.
    Vitt, D. H. 1981. Adaptive modes of the moss sporophyte. The Bryologist 84:166-186.
    Vitt, D. H. 1984. Classification of the Bryopsida. In R. M. Schuster[ed.], New Manual of Bryology, vol. 2, 676-759. Hattori Botanical Laboratory, Nichinan, Japan.
    Wagner, D., R. W. M. Sablowski and E. M. Meyerowitz. 1999. Transcriptional activation of APETALA1 by LEAFY. Science 285:582-584.
    Waters, D. A., M. A. Buchheim, R. A. Dewey, and R. C. Chapman. 1992. Preliminary inferences of the phylogeny of bryophytes from nuclear-encoded ribosomal RNA sequences. American Journal of Botany 79:459-466.
    Weigel, D. and E. M. Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell 78:203-209.
    Weigel, D. and O. Nilsson. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495-500.
    Weigel, D., J. Alvarez, D. R. Smyth, M. F. Yanofsky, and E. M. Meyerowitz. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843-859.
    Winter, K.-U., A. Becker, T. Munster, J. T. Kim, H. Saedler and G. Theissen. 1999. MADS-box G genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proceedings of the National Academy of Sciences of the United States of America 96:7342-7347.
    Wolf, P. G. 1997. Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes. American Journal of Botany 84:1429-1440
    Wolpert, L., R. Beddington, J. Brockes, T. Jessell, P. Lawrence, and E. Meyerowitz. 1998. Principles of developmenet. Oxford University Press, Oxford.
    Won, H., and S. S. Renner. 2003. Horizontal gene transfer from flowering plants to Gnetum. Proceedings of the National Academy of Sciences of the United States of America 100:10824-10829.
    Wright, S. 1943. Isolation by distance. Genetics. 28:114-138.
    Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences: CABIOS 13:555-556.
    Yang, Z., W. J. Swanson and V. D. Vacquier. 2000. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Molecular Biology and Evolution 17:1446-1455.
    Yanofsky, M. 1995. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annual Review of Plant Physiology and Plant Molecular Biology 46:167-188.
    Zhang, H. and B. G. Forde. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407-409.
    Zhang, J. 2000. Rates of conservative and radical nonsynonymous nucleotide suvstitutions in mammalian nuclear genes. Journal of Molecular Evolution 50:56-68.

    下載圖示 校內:2006-07-19公開
    校外:2006-07-19公開
    QR CODE