| 研究生: |
胡幃傑 Hu, Wei-Chieh |
|---|---|
| 論文名稱: |
液態燃料火焰合成奈米碳結構 Flame Synthesis on Carbon Nanostructures of Liquid Fuels |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 火焰合成 、奈米碳管 、奈米碳球 、液態燃料 |
| 外文關鍵詞: | Flame synthesis, Carbon nanotube, Carbon nano-onion, Liquid fuel |
| 相關次數: | 點閱:116 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用火焰已可以合成各式不同的奈米碳結構,但燃燒化學的複雜性導致火焰合成產物較其他合成法難以控制。為了增進了解火焰及其合成產物之關係,本研究使用停滯面流液態油盤火焰,探討燃料種類、氧氣濃度、取樣位置及取樣時間等操作參數對火焰合成奈米碳結構的影響。停滯面流液態油盤系統由上方的氣體燃燒器與下方的油盤組成,二者彼此相對,上燃燒器供應氧氣和氮氣混合氣,向下噴出後衝擊油盤,形成一穩定的平面擴散火焰。實驗中使用乙醇和庚烷兩種液體燃料形成之擴散火焰提供碳源和熱源,並以鎳網格作為催化劑進行沉積取樣,燃燒合成奈米碳管與奈米碳球。乙醇和庚烷分別探討含氧燃料和高C-H比對火焰合成奈米碳結構的影響。
結果顯示,所選用的燃料對生成之產物有巨大的影響。若使用含氧燃料的乙醇火焰,只能合成出奈米碳管;而使用高C-H比的庚烷作為燃料時,則奈米碳管與奈米碳球皆可生成,但形成碳管或碳球則受其它因素所影響。氧氣濃度會影響火焰環境,進而影響合成的碳產物。在乙醇火焰中,若降低氧氣濃度則可增加碳管之產量、直徑及均勻性。實驗中最佳碳管生成條件為氧氣濃度介於15–19%,火焰溫度範圍460–870 °C,且取樣位置在藍色火焰上緣下方0.5–1 mm處。分析流場中之氣體可發現,C2類氣體(C2H2、C2H4、C2H6)和CO的濃度與碳管生成有直接之關係,當氣體之軸向濃度分佈較為均勻時,碳管生成較佳。
在庚烷火焰中,藉由降低上燃燒器之氧氣濃度可以形成接近熄滅極限的藍色弱火焰,而增加氧氣濃度則可形成富含碳煙層的黃色強火焰。奈米碳管生成於強度較弱(接近熄滅極限)的藍色火焰,而奈米碳球則生成於強度較強的具碳煙層的黃色火焰中。當氧氣濃度適中時,可發現碳管與碳球同時生成在同一火焰中,隨著取樣位置的改變,可發現合成產物由碳管轉換為碳球。合成產物為碳管或碳球與取樣位置直接相關,而其成因則與該取樣位置的富碳環境(含碳物種)和碳結構的生長機制有關。而取樣時間對奈米碳結構產量的影響則取決於溫度和取樣位置。溫度較低時,增加取樣時間可使產量上升;但溫度過高時,取樣時間過長反而使產量下降。此外,取樣時間僅影響產量多少,與合成產物為碳管或碳球無關。
A great variety of carbon nanostructure (CNS) has already been synthesized in flames. Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include fuel, oxygen supply, sampling position and sampling time.
In this study, carbon nanotube (CNT) and carbon nano-onion (CNO) were synthesized using ethanol and heptane diffusion flames in a liquid-pool system which composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen outflowed from the upper oxidizer duct, and then impinged onto the vertically aligned pool to generate a planar and steady diffusion flame within a designated oxygen environment. The effects on oxygen from the fuel side and high C-H ratio fuel can be investigated by ethanol and heptane, respectively. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials.
The selection of fuel greatly influenced the structure of CNSs. Only CNTs were synthesized while using ethanol which is an oxygenated fuel. In contrast, both CNTs and CNO were found in heptane, and the determination of structure depends on other parameters.
The oxygen concentration influenced the flame environment and thus the synthesized carbon products. In ethanol flames, lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15–19%, flame temperature of 460–870 °C, and a sampling position of 0.5–1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.
In heptane flames, CNTs were synthesized in a weaker flame near extinction, and CNOs were synthesized in a more sooty flame by adjusting oxygen concentration. A transition from CNT to CNO was observed by variation of sampling position in a flame. The structure of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the structure of products is not affected.
1. Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., and Smalley, R. E., “C60: Buckminsterfullerene,” Nature, Vol. 318(6042), pp. 162-163, 1985. doi:10.1038/318162a0
2. Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354(6348), pp. 56-58, 1991. doi:10.1038/354056a0
3. Kroto, H. W., “Carbon Onions Introduce New Flavour to Fullerene Studies,” Nature, Vol. 359(6397), pp. 670-671, 1992. doi:10.1038/359670a0
4. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306(5696), pp. 666-669, 2004. doi: 10.1126/science.1102896
5. Popov, V. N., “Carbon Nanotubes: Properties and Application,” Mater. Sci. Eng. R, Vol. 43(3), pp.61-102, 2004. doi:10.1016/j.mser.2003.10.001
6. Soldano, C., Mahmood, A., and Dujardin, E., “Production, Properties and Potential of Graphene,” Carbon, Vol. 48(8), pp. 2127-2150, 2010. doi:10.1016/j.carbon.2010.01.058
7. Aqel, A., Abou El-Nour, K. M. M., Ammar, R. A. A., and Al-Warthan, A., “Carbon Nanotubes, Science and Technology Part (I) Structure, Synthesis and Characterisation,” Arab. J. Chem., Vol. 5(1), pp. 1-23, 2012. doi:10.1016/j.arabjc.2010.08.022
8. Mubarak, N. M., Abdullah, E. C., Jayakumar, N. S., and Sahu, J. N., “An Overview on Methods for the Production of Carbon Nanotubes,” J. Ind. Eng. Chem., Vol. 20(4), pp. 1186-1197, 2014. doi:10.1016/j.jiec.2013.09.001
9. Pol, V. G., Pol, S. V., Gedanken, A., Sung, M.-G., and Asai, S. “Magnetic Field Guided Formation of Long Carbon Filaments (Sausages),” Carbon, Vol. 42(12-13), pp. 2738-2741, 2004. doi:10.1016/j.carbon.2004.05.016
10. Deshmukh, A. A., Mhlanga, S. D., and Coville, N. J., “Carbon Spheres,” Mat. Sci. Eng. R., Vol. 70(1-2), pp. 1-28, 2010. doi:10.1016/j.mser.2010.06.017
11. Carballeira, Pablo, “Mechanical and Electrical Properties of Carbon Nanofiber–Ceramic Nanoparticle–Polymer Composites,” PhD. Dissertation, Department of Mechanical and Process Engineering, Kaiserslautern University of Technology (Fachbereichs Maschinenbau und Verfahrenstechnik der TU Kaiserslautern), p. 12, 2010.
12. Mordkovich, V. Z., “Carbon Nanofibers: A New Ultrahigh-Strength Material for Chemical Technology,” Theor. Found. Chem. Eng., Vol. 37(5), pp. 429-438, 2003. doi:10.1023/A:1026082323244
13. Ebbesen, T. W., and Ajayan, P. M., “Large-Scale Synthesis of Carbon Nanotubes,” Nature, Vol. 358(6383), pp. 220-222, 1992. doi:10.1038/358220a0
14. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tománek, D., Fischer, J. E., and Smalley, R. E., “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, Vol. 273(5274), pp. 483-487, 1996. http://www.jstor.org/stable/2890513.
15. Cheng, H. M., Li, F., Sun, X., Brown, S. D. M., Pimenta, M. A., Marucci, A., Dresselhaus, G., and Dresselhaus, M. S., “Bulk Morphology and Diameter Distribution of Single-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons,” Chem. Phys. Lett., Vol. 289(5-6), pp. 602-610, 1998. doi:10.1016/S0009-2614(98)00479-5
16. Kumar, M., and Ando, Y., “Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production,” J. Nanosci. Nanotechnol., Vol. 10(6), pp. 3739-3758, 2010.
17. Xu, B.-S., “Prospects and Research Progress in Nano Onion-Like Fullerenes,” New Carbon Mater., Vol. 23(4), pp. 289-301, 2008. doi:10.1016/S1872-5805(09)60001-9
18. Tessonnier, J. P., and Su, D. S., “Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review,” ChemSusChem., Vol. 4(7), pp. 824-847, 2011. doi:10.1002/cssc.201100175
19. Liu, W.-W., Chai, S.-P., Mohamed, A. R., and Hashim, U., “Synthesis and Characterization of Graphene and Carbon Nanotubes: A Review on the Past and Recent Developments,” J. Ind. Eng. Chem., Vol. 20(4), pp. 1171-1185, 2014. doi:10.1016/j.jiec.2013.08.028
20. Merchan-Merchan, W., Saveliev, A. V., Kennedy, L., and Jimenez, W. C., “Combustion Synthesis of Carbon Nanotubes and Related Nanostructures,” Prog. Energ. Combust., Vol. 36(6), pp. 696-727, 2010. doi:10.1016/j.pecs.2010.02.005
21. Paradise, M., and Goswami, T., “Carbon Nanotubes – Production and Industrial Applications,” Mater. Design, Vol. 28(5), pp. 1477-1489, 2007.
22. Chen, X. H., Deng, F. M., Wang, J. X., Yang, H. S., Wu, G. T., Zhang, X. B., Peng, J. C., and Li, W. Z., “New Method of Carbon Onion Growth by Radio-Frequency Plasma-Enhanced Chemical Vapor Deposition,” Chem. Phys. Lett., Vol. 336(3-4), pp. 201-204, 2001. doi:10.1016/S0009-2614(01)00085-9
23. Park, H. J., Meyer, J., Roth, S., and Skákalová, V., “Growth and Properties of Few-Layer Graphene Prepared by Chemical Vapor Deposition,” Carbon, Vol. 48(4), pp. 1088-1094, 2010. doi:10.1016/j.carbon.2009.11.030
24. Vlassiouk, I, Fulvio, P., Meyer, H., Lavrik, N., Datskos, P., and Smirnov, S., “Large Scale Atmospheric Pressure Chemical Vapor Deposition of Graphene,” Carbon, Vol. 54, pp. 58-67, 2013. doi:10.1016/j.carbon.2012.11.003
25. Wu, Q., Hu, Z., Wang, X. Z., Yang, Y., and Chen, Y., “Porous Alumina Template in Preparation of One-Dimensional Novel Nanomaterials,” Chin. J. Inorg. Chem., Vol. 18(7), pp. 647-653, 2002.
26. Deng, J., You, Y., Sahajwalla, V., and Joshi, R. K., “Transforming Waste into Carbon-Based Nanomaterials,” Carbon, Vol. 96, pp. 105-115, 2016. doi:10.1016/j.carbon.2015.09.033
27. Vander Wal, R. L., Ticich, T. M., and Curtis, V. E., “Diffusion Flame Synthesis of Single-Walled Carbon Nanotubes,” Chem. Phys. Lett., Vol. 323(3-4), pp. 217-223, 2000. doi:10.1016/S0009-2614(00)00522-4
28. Xu, F., Zhao, H, and Tse, S. D., “Carbon Nanotube Synthesis on Catalytic Metal Alloys in Methane/Air Counterflow Diffusion Flames,” P. Combust. Inst., Vol. 31(2), pp. 1839-1847, 2007. doi:10.1016/j.proci.2006.08.062
29. Camacho, J. and Choudhuri, A. R., “Effects of Fuel Compositions on the Structure and Yield of Flame Synthesized Carbon Nanotubes,” Fuller. Nanotub. Car. N., Vol. 15(2), pp. 99-111, 2007. doi:10.1080/15363830601177826
30. Merchan-Merchan, W., Saveliev, A. V., Kennedy, L. A., and Fridman, A. A., “Formation of Carbon Nanotubes in Counter-Flow, Oxy-Methane Diffusion Flames without Catalysts,” Chem. Phys. Lett., Vol. 354(1-2), pp. 20-24, 2002. doi:10.1016/S0009-2614(02)00027-1
31. Saveliev, A. V., Merchan-Merchan, W., and Kennedy, L. A., “Metal Catalyzed Synthesis of Carbon Nanostructures in an Opposed flow Methane Oxygen Flame,” Combust. Flame, Vol. 135(1-2), pp. 27-33, 2003. doi:10.1016/S0010-2180(03)00142-1
32. Merchan-Merchan, W.,Saveliev, A. V., and Kennedy, L. A., “High-Rate Flame Synthesis of Vertically Aligned Carbon Nanotubes using Electric Field Control,” Carbon, Vol. 42(3), pp. 599-608, 2004. doi:10.1016/j.carbon.2003.12.086
33. Merchan-Merchan, W.,Saveliev, A. V., and Kennedy, L. A., “Flame Nanotube Synthesis in Moderate Electric Fields: From Alignment and Growth Rate Effects to Structural Variations and Branching Phenomena,” Carbon, Vol. 44(15), pp. 3308-3314, 2006. doi:10.1016/j.carbon.2006.06.025
34. Merchan-Merchan, W., Saveliev, A. V., and Taylor, A. M., “High Rate Flame Synthesis of Highly Crystalline Iron Oxide Nanorods,” Nanotechnology, Vol. 19(12), p. 125605, 2008. doi:10.1088/0957-4484/19/12/125605
35. Merchan-Merchan, W., Saveliev, A. V., and Desai, M., “Volumetric Flame Synthesis of Well-Defined Molybdenum Oxide Nanocrystals,” Nanotechnology, Vol. 20(47), p. 475601, 2009. doi:10.1088/0957-4484/20/47/475601
36. Merchan-Merchan, W., Saveliev, A. V., and Nguyen, V., “Opposed Flow Oxy-Flame Synthesis of Carbon and Oxide Nanostructures on Molybdenum Probes,” P. Combust. Inst., Vol. 32(2), pp. 1879-1886, 2009. doi:10.1016/j.proci.2008.07.025
37. Merchan-Merchan, W., Saveliev, A. V., Jimenez, W. C. and Salkar, G., “Flame Synthesis of Hybrid Nanowires with Carbon Shells and Tungsten-Oxide Cores,” Carbon, Vol. 48(15), pp. 4510-4518, 2010. doi:10.1016/j.carbon.2010.08.028
38. Unrau, C. J. and Axelbaum, R. L., “Gas-Phase Synthesis of Single-Walled Carbon Nanotubes on Catalysts Producing High Yield,” Carbon, Vol. 48(5), pp. 1418-1424, 2010. doi:10.1016/j.carbon.2009.12.034
39. Unrau, C. J., Katta, V. R. and Axelbaum, R. L., “Characterization of Diffusion Flames for Synthesis of Single-Walled Carbon Nanotubes,” Combust. Flame, Vol. 157(9), pp. 1643-1648, 2010. doi:10.1016/j.combustflame.2010.05.005
40. Height, M. J., Howard, J. B., Tester, J. W. and Vander Sande, J. B., “Flame Synthesis of Single-Walled Carbon Nanotubes,” Carbon, Vol. 42(11), pp. 2295-2307, 2004. doi:10.1016/j.carbon.2004.05.010
41. Height, M. J., Howard, J. B. and Tester, J. W., “Flame Synthesis of Single-Walled Carbon Nanotubes,” P. Combust. Inst., Vol. 30(2), pp. 2537-2543, 2005. doi:10.1016/j.proci.2004.07.015
42. Xu, F., Liu, X and Tse, S. D., “Synthesis of Carbon Nanotubes on Metal Alloy Substrates with Voltage Bias in Methane Inverse Diffusion Flames,” Carbon, Vol. 44(3), pp. 570-577, 2006. doi:10.1016/j.carbon.2005.07.043
43. Yuan, L., Saito, K., Pan, C., Williams, F. A. and Gordon, A. S., “Nanotubes from Methane Flames,” Chem. Phys. Lett., Vol. 340(3-4), pp. 237-241, 2001. doi:10.1016/S0009-2614(01)00435-3
44. Yuan, L., Li, T. and Saito, K., “Synthesis of Multiwalled Carbon Nanotubes using Methane/Air Diffusion Flames,” P. Combust. Inst., Vol. 29(1), pp. 1087-1092, 2002. doi:10.1016/S1540-7489(02)80137-7
45. Yuan, L., Saito, K., Hu. W. and Chen, Z., “Ethylene Flame Synthesis of Well-Aligned Multi-Walled Carbon Nanotubes,” Chem. Phys. Lett., Vol. 346(1-2), pp. 23-28, 2001. doi:10.1016/S0009-2614(01)00959-9
46. Li, T. X., Zhang, H. G., Wang, F. J., Chen, Z. and Saito, K., “Synthesis of Carbon Nanotubes on Ni-Alloy and Si-Substrates using Counterflow Methane–Air Diffusion Flames,” P. Combust. Inst., Vol. 31(2), pp. 1849-1856, 2007. doi:10.1016/j.proci.2006.07.194
47. Li, T. X., Kuwana, K., Saito, K., Zhang, H. and Chen, Z., “Temperature and Carbon Source Effects on Methane–Air Flame Synthesis of CNTs,” P. Combust. Inst., Vol. 32(2), pp. 1855-1861, 2009. doi:10.1016/j.proci.2008.06.143
48. Sen, S. and Puri, I. K., “Flame Synthesis of Carbon Nanofibres and Nanofibre Composites Containing Encapsulated Metal Particles,” Nanotechnology, Vol. 15(3), pp. 264-268, 2004. doi:10.1088/0957-4484/15/3/005
49. Corthals, S., Van Noyen, J., Geboers, J., Vosch, T., Liang, D., Ke, X., Hotfkens, J., Van Tendeloo, G., Jacobs, P. and Sels, B., “The Beneficial Effect of CO2 in the Low Temperature Synthesis of High Quality Carbon Nanofibers and Thin Multiwalled Carbon Nanotubes from CH4 over Ni Catalysts,” Carbon, Vol. 50(2), pp. 372-384. 2012. doi:10.1016/j.carbon.2011.08.047
50. Howard, J. B., McKinnon, J. T., Makarovsky, Y., Lafleur, A. L. and Johnson, M. E., “Fullerenes C60 and C70 in Flames,” Nature, Vol. 352(6331), pp. 139-141. 1991. doi:10.1038/352139a0
51. Hebgen, P., Goel, A., Howard, J. B., Rainey, L. C. and Vander Sande, J. B., “Synthesis of Fullerenes and Fullerenic Nanostructures in a Low-Pressure Benzene/Oxygen Diffusion Flame,” P. Combust. Inst., Vol. 28(1), pp. 1397-1404, 2000. doi: 10.1016/S0082-0784(00)80355-0
52. Silvestrini, M., Merchan-Merchan, W., Richter, H., Saveliev, A. and Kennedy, L. A., “Fullerene Formation in Atmospheric Pressure Opposed Flow Oxy-Flames,” P. Combust. Inst., Vol. 30(2), pp. 2545-2552, 2005. doi:10.1016/j.proci.2004.08.238
53. Liu, T.-C. and Li, Y.-Y., “Synthesis of Carbon Nanocapsules and Carbon Nanotubes by an Acetylene Flame Method,” Carbon, Vol. 44(10), pp. 2045-2050, 2006. doi:10.1016/j.carbon.2006.01.032
54. Dhand, V., Prasad, J. S., Rao, M. V., Bharadwaj, S., Anjaneyulu, Y. and Jain, P. K., “Flame Synthesis of Carbon Nano Onions using Liquefied Petroleum Gas without Catalyst,” Mater. Sci. Eng.: C, Vol. 33(2), pp. 758-762, 2013. doi:10.1016/j.msec.2012.10.029
55. Li, Z., Zhu, H., Xie, D., Wang, K., Cao, A., Wei, J., Li, X., Fan, L. and Wu, D., “Flame synthesis of few-layered graphene/graphite films,” Chem. Commun., Vol. 47, pp. 3520-3522, 2011. doi: 10.1039/C0CC05139J
56. Memon, N. K., Tse, S. D., Al-Sharab, J. F., Yamaguchi, H., Goncalves, A.-M. B., Kear, B. H., Jaluria, Y., Anderi, E. A. and Chhowalla, M., “Flame Synthesis of Graphene Films in Open Environments,” Carbon, Vol. 49(15), pp. 5064-5070, 2011. doi:10.1016/j.carbon.2011.07.024
57. Liu, Y., Pan, C. and Wang. J., “Raman Spectra of Carbon Nanotubes and Nanofibers Prepared by Ethanol Flames,” J. Mater. Sci., Vol. 39(3), pp. 1091-1094. 2004. doi:10.1023/B:JMSC.0000012952.20840.09
58. Pan, C., Liu, Y., Cao, F., Wang, J. and Ren, Y., “Synthesis and Growth Mechanism of Carbon Nanotubes and Nanofibers from Ethanol Flames,” Micron, Vol. 35(6), pp. 461-468, 2004. doi:10.1016/j.micron.2004.01.009
59. Zhu, H., Kuang, T., Zhu, B., Lei, Z. and Ringer, S. P., “Flame Synthesis of Carbon Nanostructures on Ni-Plated Hardmetal Substrates,” Nanoscale Res. Lett., Vol. 6(1), pp. 331-336, 2011. doi:10.1186/1556-276X-6-331
60. Mohapatra, D., Badrayyana, S., and Parida, S., “Facile Wick-and-Oil Flame Synthesis of High-Quality Hydrophilic Onion-Like Carbon Nanoparticles,” Mater. Chem. Phys., Vol. 174, pp. 112-119, 2016. doi:10.1016/j.matchemphys.2016.02.057
61. Li, Z., Zhu, H., Wang, K., Wei, J., Gui, X., Li, C., Fan, L., Sun, P. and Wu, D., “Ethanol Flame Synthesis of Highly Transparent Carbon Thin Films,” Carbon, Vol. 49(1), pp. 237-241, 2011. doi:10.1016/j.carbon.2010.09.009
62. Zhang, Y., Cao, B., Zhang, B., Qi, X. and Pan, C., “The Production of Nitrogen-Doped Graphene from Mixed Amine plus Ethanol Flames,” Thin Solid Films, Vol. 520(23), pp. 6850-6855, 2012. doi:10.1016/j.tsf.2012.07.085
63. Liu, H., Zhu, S., and Jiang, W., “Rapid flame Synthesis of Multilayer Graphene on SiO2/Si Substrate,” J. Mater. Sci.: Mater. Electron., Vol. 27(3), pp. 2795-2799, 2016. doi:10.1007/s10854-015-4092-y
64. Du, X., Liu, H., and Mai, Y., “Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame,” ACS Nano, Vol. 10(1), pp. 453-462, 2016. doi:10.1021/acsnano.5b05373
65. Hall, B., Zhuo, C., Levendis, Y. A. and Richter, H., “Influence of the Fuel Structure on the Flame Synthesis of Carbon Nanomaterials,” Carbon, Vol. 49(11), pp. 3412-3423, 2011. doi:10.1016/j.carbon.2011.04.036
66. Baker, R. T. K., “Catalytic Growth of Carbon Filaments,” Carbon, Vol. 27(3), pp. 315-323, 1989. doi:10.1016/0008-6223(89)90062-6
67. He, C. N., Shi, C. S., Du, X. W., Li, J. J. and Zhao, N. Q., “TEM Investigation on the Initial Stage Growth of Carbon Onions Synthesized by CVD,” J. Alloys Compd., Vol. 452(2), pp. 258-262, 2008. doi:10.1016/j.jallcom.2006.11.016
68. Ugarte, D., “Curling and Closure of Graphitic Networks under Electron-Beam Irradiation,” Nature, Vol. 359(6397), pp. 707-709, 1992. doi:10.1038/359707a0
69. Xiao, F. K., “A Study on Carbon Nano-Structures in Jet Diffusion Flames of Mixed Fuels,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2007.
70. Chang, C. Y., “Combustion Synthesis of Carbon Nanotubes in Inverse Diffusion Flames,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2006.
71. Kuo, W. C., “A Study on Carbon Nano-Structures in Inverse Diffusion Flames of Mixed Fuels,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2007.
72. Chen, W. C., “Influence of Oxygen Concentration on Synthesis of Carbon Nano-Structures in Inverse Jet Diffusion Flames of Mixed Fuels,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2008.
73. Huang, F. C., “Synthesis of Carbon Nano-Structures in Partially-Premixed Jet Flames,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2010.
74. Hsu, H. Y., “ The Influence of Outer Flows on Carbon Nano-Material Synthesis in Rich Premixed Jet Flames,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2012.
75. Chung, D. H., “Acoustic Modulation on Flame Synthesis of Carbon Nano-Materials,” PhD thesis, Department of Mechanical Engineering, National Cheng Kung University, 2012.
76. Cheng, C. Y., “Flame Synthesis of Carbon Nanostructures in Acoustically Modulated Coaxial Jet Flames,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2011.
77. Chen, K. M., “Flame Synthesis of Carbon Nano-Structures in Acoustically Modulated Methane Diffusion Flames,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2012
78. Yang, Z. Y., “Synthesis of Carbon Nano-Structures Enhanced by Acoustic Modulation in Jet Diffusion Flames,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2014
79. Sari, S. K., “Synthesis of Carbon Nano-Materials in Methane-Ethylene Jet Diffusion Flames Modulated by Acoustic Excitation,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2014.
80. Chung, D. H., “Combustion Synthesis of Carbon Nanotubes via Diffusion Flames in a Rotating Opposed-Jet Flow,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2006.
81. Cheng, S. C., “Co-Firing of Manufactured Gases and Synthesis of Carbon Nanotubes in Counterflow Diffusion Flames,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2007.
82. Huang, W. C., “Concentration Fields in Inverse Jet Diffusion Flames of Mixed Fuels & Influence of Flow Rotation on Synthesis of Carbon Nano-Structures via Diffusion Flame Method,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2009.
83. Lin, J. P., “Synthesis of Carbon Nano-Structures in Alcohol Flames,” Master thesis, Department of Mechanical Engineering, Kun Shan University, 2014.
84. Hu, W. C., “Simulations on Room Fires and Analysis on Carbon Nano-Structures in Counterflow Diffusion Flames,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2009.
85. Rasband, W. S., “ImageJ,” U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997-2015. http://imagej.nih.gov/ij/
86. Hou, S. S., Chung, D. H. and Lin, T. H., “Flame Synthesis of Carbon Nanotubes in a Rotating Counterflow,” J. Nanosci. Nanotechnol., Vol. 9(8), pp. 4826-4833, 2009. doi: 10.1166/jnn.2009.1277
87. Motojima, S., Hasixgawa, I., Kagiya, S., Andoh, K. and Iwanaga, H., “Vapor Phase Preparation of Micro-Coiled Carbon Fibers by Metal Powder Catalyzed Pyrolysis of Acetylene Containing a Small Amount of Phosphorus Impurity,” Carbon, Vol. 33(8), pp. 1167-1173, 1995. doi:10.1016/0008-6223(95)00072-L
88. Seshadri, K. and Williams, F. A., “Laminar Flow between Parallel Plates with Injection of a Reactant at High Reynolds Number,” Int. J. Heat Mass. Tran., Vol. 21(2), pp. 251-253, 1978. doi:10.1016/0017-9310(78)90230-2
89. Law, C. K., “Combustion Physics,” p. 226, New York: Cambridge University Press, 2006.
校內:2018-07-01公開