| 研究生: |
林幸瑩 Lin, Hsing-Ying |
|---|---|
| 論文名稱: |
奈米電漿子之表面增強拉曼散射生物感測器 Nanoplasmonic Biosensors Based on Surface-enhanced Raman Scattering |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 共同指導教授: |
崔祥辰
Chui, Hsiang-Chen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 近場光學掃描式顯微鏡 、有限差分時域演算法 、表面增強拉曼散射光譜術 、表面電漿子 、次波長結構與奈米結構 、奈米科技 、生醫感測應用 |
| 外文關鍵詞: | near-field scanning optical microscope (NSOM), finite-difference time-domain (FDTD) simulation, surface-enhanced Raman spectroscopy (SERS), surface plasmons, subwavelength structures and nanostructures, nanotechnology, biomedical sensing applications |
| 相關次數: | 點閱:179 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用奈微米技術對於奈米光學生醫感測器進行一系列全面性理論模擬分析與實驗研究,針對不同型式的奈米粒子與陣列結構之表面電漿子誘導之光學增益特性,從單一奈米粒子到成對奈米粒子對、以至於特殊奈米結構陣列,作奈米粒子與奈米結構之尺寸、間距、形狀及入射光場激發偏振方向相關之光場分佈與強化特性探討。本研究利用近場光學掃描式顯微鏡直接觀察單一與成對奈米粒子所產生之區域電磁場強化及其近場分佈狀態,並利用三維有限時域差分法針對對稱及非對稱奈米結構陣列進行一系列特定極化電磁場強模擬計算,同時搭配螢光分子Rhodamine 6G (R6G) 做表面強化拉曼散射光譜量測,並計算出特定激發波段之陣列相對拉曼強化因子,以驗證模擬計算結果。文中也對於使用不同奈米粒子與陣列結構的製備方法及其生醫感測應用潛力做詳盡分析與討論。
This dissertation gives an overall study of the size-, interparticle distance-, shape-, and incident polarization-dependent optical field enhancements from a single nanoparticle and nanoparticle pairs to nanostructure arrays. The localized optical properties and electromagnetic (EM) field distributions of a nanoparticle and nanoparticle pairs are directly investigated by the near-field scanning optical microscope (NSOM). The field enhancements and relative enhancement factors of isotropic and anisotropic nanostructure arrays are individually studied via the three-dimensional (3D) finite-difference time-domain (FDTD) simulation and surface-enhanced Raman spectroscopy (SERS) with the probe of Rhodamine 6G (R6G) molecules. Different fabrication methods of nanoparticle substrates and nanostructure arrays are also presented in detail. Finally, the importance of size-, interparticle distance-, shape-, and incident polarization-dependent surface plasmon resonances associated with optical field enhancements and potential roles of periodic SERS-active substrates in biomedical sensing applications are summarized.
1. R. Narayanaswamy and O. S. Wolfbeis, Optical sensors: industrial, environmental, and diagnostic applications (Springer, New York, 2004).
2. W. E. Moerner, “New directions in single-molecule imaging and analysis,” PNAS 104, 12596-12602 (2007).
3. W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques 36, 114-122 (2004).
4. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., Hoboken, NJ, 1999).
5. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, Inc., Hoboken, NJ, 2003).
6. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, Florida, 2003).
7. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
8. N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluidics and Nanofluidics 4, 117-127 (2008).
9. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33, 563-565 (2008).
10. J. D. Suter, I. M. White, H. Y. Zhu, and X. D. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Optics 46, 389-396 (2007).
11. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800-1802 (2007).
12. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
13. B. Liedberg, C. Nylander, and I. Lundstrom, “Surface-Plasmon Resonance for Gas-Detection and Biosensing,” Sensor Actuator 4, 299-304 (1983).
14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3-15 (1999).
15. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
16. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosensors Bioelectronics 23, 151-160 (2007).
17. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462-493 (2008).
18. A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes,”Sensors and Actuators B: Chemical 106, 383-387 (2005).
19. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Optics 27, 1160-1163 (1988).
20. B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sensors and Actuators B: Chemical 11, 63-72 (1993).
21. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7, 1118-1129 (2007).
22. F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Analytical Chemistry 76, 3530-3535 (2004).
23. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N. A. P. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15, 8163-8169 (2007).
24. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical 12, 213-220 (1993).
25. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical 74, 106-111 (2001).
26. H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Optics 46, 800-806 (2007).
27. M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B: Chemical 90, 236-242 (2003).
28. M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30, 233-235 (2005).
29. M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,”Sensors and Actuators B: Chemical 11, 455-459 (1993).
30. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sensors and Actuators B: Chemical 76, 8-12 (2001).
31. C. Mouvet, R. D. Harris, C. Maciag, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. Abuknesha, and G. Ismail, “Determination of simazine in water samples by waveguide surface plasmon resonance,” Analytica Chimica Acta 338, 109-117 (1997).
32. C. M. Wu and M. C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509-3514 (2004).
33. H. P. Ho, W. C. Law, S. Y. Wu, C. L. Lin, and S. K. Kong, “Real-time optical biosensor based on differential phase measurement of surface plasmon resonance,” Biosensors and Bioelectronics 20, 2177-2180 (2005).
34. R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sensors and Actuators B: Chemical 107, 952-956 (2005).
35. A. A. Kruchinin and Y. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor,”Sensors and Actuators B: Chemical 30, 77-80 (1996).
36. N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D'Agnese, “High resolution surface plasmon resonance spectroscopy,” Rev. Sci. Instrum. 70, 4656-4660 (1999).
37. R. Slavík, J. Homola, and J. Ctyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sensors and Actuators B: Chemical 54, 74-79 (1999).
38. D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensors and Actuators B: Chemical 115, 227-231 (2006).
39. F. C. Chien, C. Y. Lin, J. N. Yih, K. L. Lee, C. W. Chang, P. K. Wei, C. C. Sun, and S. J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosensors and Bioelectronics 22, 2737-2742 (2007).
40. J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sensors and Actuators B: Chemical 107, 154-161 (2005).
41. P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sensors and Actuators A: Physical 85, 189-193 (2000).
42. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33, 512-514 (2008).
43. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Analytica Chimica Acta 620, 8-26 (2008).
44. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004).
45. M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of Modern Physics 57, 783 (1985).
46. M. Fleischm, P. J. Hendra, and Aj. Mcquilla, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163-166 (1974).
47. Z. Q. Tian, “Surface-enhanced Raman spectroscopy: advancements and applications,” Journal of Raman Spectroscopy 36, 466-470 (2005).
48. A. Otto, “Surface-enhanced Raman-scattering of adsorbates,” Journal of Raman Spectroscopy 22, 743-752 (1991).
49. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman-scattering,” J. Phys.-Condens. Mat. 4, 1143-1212 (1992).
50. R. J. C. Brown, R. E. Yardley, A. S. Brown, P. R. Edwards, C. Rivier, and C. Yardin, “Analytical methodologies with very low blank levels: Implications for practical and empirical evaluations of the limit of detection,” Anal. Lett. 39, 1229-1241 (2006).
51. R. J. C. Brown and M. J. T. Milton, “Analytical techniques for trace element analysis: an overview,” TrAC Trends in Analytical Chemistry 24, 266-274 (2005).
52. R. J. C. Brown and M. J. T. Milton, “Developments in accurate and traceable chemical measurements,” Chem. Soc. Rev. 36, 904-913 (2007).
53. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
54. R. Aroca, Surface-enhanced vibrational spectroscopy (Wiley, Hoboken, NJ, 2006).
55. T. M. Cotton, J.-H. Kim, and G. D. Chumanov, “Application of surface-enhanced Raman spectroscopy to biological systems,” Journal of Raman Spectroscopy 22, 729-742 (1991).
56. A. J. Haes, C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Nanoparticle optics for surface-enhanced sensing and Raman spectroscopy,” Abstr. Pap. Am. Chem. S. 227, U107-U108 (2004).
57. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Analytical Chemistry 77, 338a-346a (2005).
58. T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” TrAC Trends in Analytical Chemistry 17, 557-582 (1998).
59. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
60. J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Analytical Chemistry 71, 4903-4908 (1999).
61. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev. 105, 1025-1102 (2005).
62. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal aanoparticles: synthesis, assembly, and optical applications,”The Journal of Physical Chemistry B 109, 13857-13870 (2005).
63. K. Faulds, W. E. Smith, and D. Graham, “DNA detection by surface enhanced resonance Raman scattering (SERRS),” Analyst 130, 1125-1131 (2005).
64. T. E. Rohr, T. Cotton, N. Fan, and P. J. Tarcha, “Immunoassay employing surface-enhanced Raman spectroscopy,” Analytical Biochemistry 182, 388-398 (1989).
65. X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, and Y. Ozaki, “Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product,” Analytical Chemistry 69, 1492-1495 (1997).
66. S. P. Mulvaney, M. D. Musick, C. D. Keating, and M. J. Natan, “Glass-coated, analyte-tagged nanoparticles: A new tagging system based on detection with surface-enhanced Raman scattering,” Langmuir 19, 4784-4790 (2003).
67. J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analytical Chemistry 77, 6147-6154 (2005).
68. D. S. Grubisha, R. J. Lipert, H.-Y. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Analytical Chemistry 75, 5936-5943 (2003).
69. S. P. Xu, X. H. Ji, W. Q. Xu, X. L. Li, L. Y. Wang, Y. B. Bai, B. Zhao, and Y. Ozaki, “Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering,” Analyst 129, 63-68 (2004).
70. X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax niomarker by surface-enhanced Raman spectroscopy,” Journal of the American Chemical Society 127, 4484-4489 (2005).
71. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002).
72. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
73. Z.-Q. Tian, B. Ren, and D.-Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” The Journal of Physical Chemistry B 106, 9463-9483 (2002).
74. V. Russier and M. P. Pileni, “Optical absorption spectra of arrays of metal particles from cluster calculations: cluster size and shape effects,” Surface Science 425, 313-325 (1999).
75. M. Kerker, “Effect of optical constants on calculated values of surface-enhanced Raman scattering,” J. Opt. Soc. Am. B 2, 1327-1329 (1985).
76. R. P. Vanduyne, J. C. Hulteen, and D. A. Treichel, “Atomic-force microscopy and surface-enhanced Raman-spectroscopy .1. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99, 2101-2115 (1993).
77. R. J. C. Brown, J. Wang, R. Tantra, R. E. Yardley, and M. J. T. Milton, “Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS,” Faraday Discuss 132, 201-213 (2006).
78. R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, and J. V. Garcia-Ramos, “Surface-enhanced Raman scattering on colloidal nanostructures,” Adv. Colloid Interfac. 116, 45-61 (2005).
79. R. Tantra, R. J. C. Brown, and M. J. T. Milton, “Strategy to improve the reproducibility of colloidal SERS,” Journal of Raman Spectroscopy 38, 1469-1479 (2007).
80. R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, and M. J. Natan, “Ag-clad Au nanoparticles: Novel aggregation, optical, and surface-enhanced Raman scattering properties,” The Journal of Physical Chemistry 100, 718-724 (1996).
81. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” PNAS 101, 17930-17935 (2004).
82. Y. S. Huh and D. Erickson, “Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays,” Biosensors Bioelectronics 25, 1240-1243 (2010).
83. G. Braun, S. J. Lee, M. Dante, T.-Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,”Journal of the American Chemical Society 129, 6378-6379 (2007).
84. Y. Huh, A. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluidics and Nanofluidics 6, 285-297 (2009).
85. J. L. Abell, J. D. Driskell, R. A. Dluhy, R. A. Tripp, and Y. P. Zhao, “Fabrication and characterization of a multiwell array SERS chip with biological applications,” Biosensors and Bioelectronics 24, 3663-3670 (2009).
86. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015-2018 (2004).
87. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” The Journal of Physical Chemistry A 107, 3372-3378 (2003).
88. T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8, 3450-3455 (2008).
89. G. Canziani, W. T. Zhang, D. Cines, A. Rux, S. Willis, G. Cohen, R. Eisenberg, and I. Chaiken, “Exploring biomolecular recognition using optical biosensors,” Methods 19, 253-269 (1999).
90. H. Z. Huang, P. X. Ran, and Z. G. Liu, “Signal enhancement of surface plasmon resonance-based immunoassays for the allergen detection,” Sensors and Actuators B: Chemical 131, 417-423 (2008).
91. W. M. Mullett, E. P. C. Lai, and J. M. Yeung, “Surface plasmon resonance-based immunoassays,” Methods 22, 77-91 (2000).
92. X. Hong and F. J. Kao, “Microsurface plasmon resonance biosensing based on gold-nanoparticle film,” Appl. Optics 43, 2868-2873 (2004).
93. F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Milli. 2, 259-272 (1981).
94. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, Berlin, New York, 1988).
95. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik A Hadrons and Nuclei 216, 398-410 (1968).
96. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3-15 (1999).
97. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
98. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996).
99. 黃貞翰, “金屬奈米粒子之區域表面電漿共振於近場分析研究,” 光電科學與工程研究所博士論文 (成功大學, 台南, 2009).
100. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983).
101. S. M. Nie and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
102. S. M. Nie, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Abstr. Pap. Am. Chem. S. 221, U244-U244 (2001).
103. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755-6759 (2002).
104. V. P. Drachev, V. C. Nashine, M. D. Thoreson, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for detection of antibody-antigen binding,” Langmuir 21, 8368-8373 (2005).
105. Z. B. Wang, B. S. Luk'yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
106. S. R. Emory, W. E. Haskins, and S. Nie, “Direct observation of size-dependent optical enhancement in single metal nanoparticles,” Journal of the American Chemical Society 120, 8009-8010 (1998).
107. J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211-6214 (2002).
108. A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, “Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum,” Opt. Lett. 28, 1686-1688 (2003).
109. B. H. Choi, H. H. Lee, S. M. Jin, S. K. Chun, and S. H. Kim, “Characterization of the optical properties of silver nanoparticle films,” Nanotechnology 18, 075706 (2007).
110. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Physical Review Letters 88, (2002).
111. S. Kawata, Near-field optics and surface plasmon polaritons (Springer, New York, 2001).
112. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767-770 (1989).
113. J. M. Vigoureux, C. Girard, and D. Courjon, “General principles of scanning tunneling optical microscopy,” Opt. Lett. 14, 1039-1041 (1989).
114. U. C. Fischer, U. T. Durig, and D. W. Pohl, “Scanning near-field optical microscopy (SNOM) in reflection or scanning optical tunneling microscopy (SOTM),” Scanning Microscopy 3, 1-7 (1989).
115. D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning yunneling optical microscopy,” Opt. Commun. 71, 23-28 (1989).
116. M. A. Taubenblatt, “Lateral forces and topography using scanning tunneling microscopy with optical sensing of the tip position,” Appl. Phys. Lett. 54, 801-803 (1989).
117. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics Reports 408, 131-314 (2005).
118. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027-5030 (1987).
119. V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson, and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” Journal of Raman Spectroscopy 36, 648-656 (2005).
120. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16, 9580-9586 (2008).
121. J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Koelsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70, 2751-2757 (1999).
122. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).
123. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
124. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096-1098 (2001).
125. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
126. Z. B. Wang, B. S. Luk'yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, “The influences of particle number on hot spots in strongly coupled metal nanoparticles chain,” J. Chem. Phys. 128, 094705 (2008).
127. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Physical Review Letters 94, 017402 (2005).
128. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999).
129. Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176-2179 (2002).
130. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957-961 (2004).
131. C. L. Nehl, H. W. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683-688 (2006).
132. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988-9999 (2006).
133. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113, 1946-1953 (2009).
134. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7, 2080-2088 (2007).
135. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965-11971 (2000).
136. K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281-R6284 (1998).
137. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Physical Review Letters 83, 4357-4360 (1999).
138. H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates,” Journal of the American Chemical Society 127, 14992-14993 (2005).
139. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: Optimization of nanoparticle size,” Analytical Chemistry 76, 5370-5378 (2004).
140. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation (Reprinted from Nature, vol. 121, pp 501-502, 1928),” Curr. Sci. India 74, 381-381 (1998).
141. J.-H. Lee, M. A. Mahmoud, V. B. Sitterle, J. J. Sitterle, and J. C. Meredith, “Highly scattering, surface-enhanced Raman scattering-active, metal nanoparticle-coated polymers prepared via combined swelling−heteroaggregation,” Chemistry of Materials 21, 5654-5663 (2009).
142. D. S. Wang, H. Chew, and M. Kerker, “Enhanced Raman-scattering at the surface (SERS) of a spherical-particle,” Appl. Optics 19, 2256-2257 (1980).
143. S. L. Mccall, P. M. Platzman, and P. A. Wolff, “Surface-enhanced Raman scattering,” Phys. Lett. A 77, 381-383 (1980).
144. J. C. Tsang, J. R. Kirtley, and T. N. Theis, “Surface-plasmon contributions to surface-enhanced Raman scattering,” J. Am. Phys. Soc. 25, 424-424 (1980).
145. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters 78, 1667 (1997).
146. B. Carazza and N. Robotti, “The first molecular models for an electromagnetic - Theory of dispersion and some aspects of physics at the end of the nineteenth century,” Annals of Science 53, 587 - 607 (1996).
147. C. Pasquini, “Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications,” J. Brazil Chem. Soc. 14, 198-219 (2003).
148. T. Wriedt, “A review of elastic light scattering theories,” Particle and Particle Systems Characterization 15, 67-74 (1998).
149. J. R. Kirtley, J. C. Tsang, T. N. Theis, and S. S. Jha, “Inelastic electron-tunneling and surface-enhanced Raman scattering from tunneling junctions,” J. Electrochem. Soc. 127, C376-C376 (1980).
150. J. R. Kirtley, S. S. Jha, and J. C. Tsang, “Surface-plasmon model of surface enhanced Raman scattering,” Solid State Commun. 35, 509-512 (1980).
151. T. K. Lee and J. L. Birman, “Quantum theory of enhanced Raman scattering by molecules on metals - Surface plasmon mechanism for plane metal surface,” Phys. Rev. B 22, 5961-5966 (1980).
152. H. G. Oh, H. R. Lee, T. F. George, C. I. Um, Y. M. Choi, and W. H. Kahng, “Quantum mechanics of a molecular system adsorbed on a dielectric surface,” Phys. Rev. A 40, 45 (1989).
153.“Raman Spectroscopy,” retrieved http://en.wikipedia.org/wiki/Raman_spectroscopy.
154. J. C. Lindon, G. E. Tranter, and J. L. Holmes, “Encyclopedia of spectroscopy and spectrometry” (Academic Press, 2000), retrieved http://www.sciencedirect.com/science/referenceworks/9780122266805.
155. R. L. McCreery, Raman spectroscopy for chemical analysis (John Wiley & Sons, New York, 2000).
156. R. K. Chang and T. E. Furtak, Surface enhanced Raman scattering (Plenum Press, New York, 1982).
157. K.-H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, “Raman enhancement factor of a single tunable nanoplasmonic resonator,” The Journal of Physical Chemistry B 110, 3964-3968 (2006).
158. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3, 1229-1233 (2003).
159. R. Kirtley, S. S. Jha, and J. C. Tsang, “Theory of surface enhanced Raman scattering,” J. Am. Phys. Soc. 25, 424-424 (1980).
160. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 61101 (2006).
161. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chem. Soc. Rev. 37, 1025-1041 (2008).
162. A. Otto, J. Billmann, J. Eickmans, U. Ertürk, and C. Pettenkofer, “The “adatom model” of SERS (Surface Enhanced Raman Scattering): The present status,” Surface Science 138, 319-338 (1984).
163. T. Vonfoerster, “Surface-enhanced Raman effect,” Phys. Today 33, 18-20 (1980).
164. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday Trans. 2 75, 790-798 (1979).
165. K. Li, “A model of coherent parametric-excitation for giant Raman effect,” Surface Science 115, 513-523 (1982).
166. C. K. Hu and C. Y. Huang, “Cooperative effects in Raman scattering,” Opt. Commun. 43, 395-400 (1982).
167. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106, 9463-9483 (2002).
168. T. K. Huang, Y. C. Chen, H. C. Ko, H. W. Huang, C. H. Wang, H. K. Lin, F. R. Chen, J. J. Kai, C. Y. Lee, and H. T. Chiu, “Growth of high-aspect-ratio gold nanowires on silicon by surfactant-assisted galvanic reductions,” Langmuir 24, 5647-5649 (2008).
169. K. Arya, “Scattering T-matrix theory in wave-vector space for surface-enhanced Raman scattering in clusters of nanoscale spherical metal particles,” Phys. Rev. B 74, 195438 (2006).
170. R. Gunawidjaja, S. Peleshanko, H. Ko, and V. V. Tsukruk, “Bimetallic nanocobs: Decorating silver nanowires with gold nanoparticles,” Adv. Mater. 20, 1544-1549 (2008).
171. M. Kahraman, N. Tokman, and M. Culha, “Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering,” Chem. Phys. Chem. 9, 902-910 (2008).
172. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Physical Review Letters 100, 203002 (2008).
173. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37, 898-911 (2008).
174. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897-2899 (1999).
175. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” Journal of Raman Spectroscopy 36, 541-550 (2005).
176. A. Beljebbar, G. D. Sockalingum, J. F. Angiboust, and M. Manfait, “Near-infrared FT-SERS microspectroscopy on silver and gold surfaces: Technical development, mass sensitivity, and biological applications,” Appl. Spectrosc. 50, 148-153 (1996).
177. Y. Maeda, H. Yamamoto, and H. Kitano, “Self-assembled monolayers as novel biomembrane mimetics .1. Characterization of cytochrome-C bound to self-assembled monolayers on silver by surface-enhanced resonance Raman spectroscopy,” J. Phys. Chem. 99, 4837-4841 (1995).
178. D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381-385 (1998).
179. D. Graham and R. Goodacre, “Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy,” Chem. Soc. Rev. 37, 883-884 (2008).
180. K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering,” Journal of the American Chemical Society 125, 588-593 (2003).
181. C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Analytical Chemistry 76, 78-85 (2004).
182. M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, “Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells,” Rev. Sci. Instrum. 76, 063710 (2005).
183. T. Vodinh, K. Houck, and D. L. Stokes, “Surface-enhanced Raman gene probes,” Analytical Chemistry 66, 3379-3383 (1994).
184. Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72, 443-449 (2007).
185. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. M. Nie, and R. M. O'Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657-667 (2006).
186. Z. H. Zhu, T. Zhu, and Z. F. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15, 357-364 (2004).
187. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957-961 (2004).
188. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates,” Nano Lett. 6, 2225-2231 (2006).
189. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18, 165-172 (2010).
190. J. W. Liaw, “Local-field enhancement and quantum yield of metallic dimer,” Jpn. J. Appl. Phys. 46, 5373-5378 (2007).
191. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622-2625 (2006).
192. N. Felidj, J. Grand, G. Laurent, J. Aubard, G. Levi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128, 094702 (2008).
193. O. L. Muskens, G. Bachelier, N. Del Fatti, F. Vallee, A. Brioude, X. C. Jiang, and M. P. Pileni, “Quantitative absorption spectroscopy of a single gold nanorod,” J. Phys. Chem. C 112, 8917-8921 (2008).
194. J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” Journal of the American Chemical Society 127, 5312-5313 (2005).
195. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901-1903 (2001).
196. J. Petschulat, D. Cialla, N. Janunts, C. Rockstuhl, U. Hubner, R. Moller, H. Schneidewind, R. Mattheis, J. Popp, A. Tunnermann, F. Lederer, and T. Pertsch, “Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering,” Opt. Express 18, 4184-4197 (2010).
197. S. J. Lee, J. M. Baik, and M. Moskovits, “Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire,” Nano Lett. 8, 3244-3247 (2008).
198. P. Mohanty, I. Yoon, T. Kang, K. Seo, K. S. K. Varadwaj, W. Choi, Q. H. Park, J. P. Ahn, Y. D. Suh, H. Ihee, and B. Kim, “Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering,” Journal of the American Chemical Society 129, 9576–9577 (2007).
199. A. G. Brolo, E. Arctander, and C. J. Addison, “Strong polarized enhanced Raman scattering via optical tunneling through random parallel nanostructures in Au thin films,” J. Phys. Chem. B 109, 401-405 (2005).
200. J. Melngailis, “Focused ion-beam technology and applications,” J. Vac. Sci. Technol. B 5, 469-495 (1987).
201. S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287-300 (2001).
202. M. Sugiyama and G. Sigesato, “A review of focused ion beam technology and its applications in transmission electron microscopy,” J. Electron. Microsc. 53, 527-536 (2004).
203. J. Gierak, “Focused ion beam technology and ultimate applications,” Semicond. Sci. Tech. 24, 043001 (2009).
204. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813-4815 (2004).
205. J. Jin, The finite element method in electromagnetics, 2nd ed. (Wiley, New York, 2002).
206. M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, and S. Yamada, “Surface-enhanced nonresonance Raman scattering from size- and morphology-controlled gold nanoparticle films,”J. Phys. Chem. B 108, 11660-11665 (2004).
207. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370-4379 (1972).
208. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88, 5935-5944 (1984).
校內:2020-12-31公開