| 研究生: |
李政恩 Lee, Cheng-En |
|---|---|
| 論文名稱: |
可調控潤濕性及黏著性的透明表面之設計與製備 Design and Fabrication of Transparent Surfaces with Tunable Water Wettability and Adhesion |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 透明性 、粗糙度 、碳氟鏈矽烷 、潤濕性 、可調控黏著性 |
| 外文關鍵詞: | transparency, roughness, fluorinated silane, wettability, tunable adhesion |
| 相關次數: | 點閱:162 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在探討如何設計與製備出一可調控潤濕性及黏著性的透明表面。運用靜電逐層組裝技術在玻璃基板上製備出兼具透明及超親水的二氧化矽奈米粒子薄膜,首先控制本體層數以創造出不同的粗糙表面結構,並觀察在粗糙度的變化下,不同疏水改質程度對其潤濕性及黏著性質的影響。實驗結果顯示粗糙的SiO2奈米粒子薄膜在不同程度的疏水改質對其表面有著極大的影響,所以可展現出多樣化的濕潤性及黏著性,而在同一疏水改質程度下,不同粗糙的表面結構也可得到不同的潤濕性與黏著性。此外,比較碳氟鏈和碳氫鏈矽烷對潤濕性及黏著性的影響,從實驗結果得知,碳氟鏈矽烷可得到較高的接觸角和較低的遲滯接觸角,也就是擁有比較強的疏水性質;而在不同疏水改質程度下,遲滯接觸角和黏著力的趨勢則很相像,從低到高的改質程度皆是由小變大,再由大至小之極大的變化,然而因改質速度較快會在高改質程度時會持平甚至微幅上升。之後本研究製作潤濕圖 (wetting diagram) 去進行潤濕行為模式的分析,最後提出一可能機制與潤濕行為模式做結合,解釋平坦和粗糙表面在疏水改質程度下會有如此截然不同的潤濕行為和黏著性質。
This work aims at how to design and fabricate the transparent surfaces with tunable water wettability and adhesion. An electrostatic layer-by-layer (ELbL) assembly process was utilized to fabricate transparent and superhydrophilic nanoparticulate thin films on glass substrates, and controlling the numbers of body layer creates the different rough surface morphology in this assembly process. Degree of silanization effect on wettability and adhesion were then observed in the variation of roughness. Experiments show the rough SiO2 nanoparticulate thin films have significant influence on the surfaces in different degree of silanization, so they can perform a variety of wettability and adhesion. Different rough surface structure can also get tunable wettability and adhesion in the same degree of silanization. Furthermore, we compare the wettability and adhesion of fluorinated silane with alkylsilane. Experiments show fluorinated silane can get higher contace angle and lower contact angle hysteresis, and it can also possess more powerful hydrophobicity. Surface modification by these two silanes can acquire similar trend of the wettability and adhesion in the degree of silanization. The hysteresis and adhesion exihibit extreme variation which goes through a maximum and drop off at higher degree of silanization on SiO2 nanoparticulate thin film. But the rate of modification by using fluorinated silane is faster to modify completely, it will be eaual or rise slowly at last. Finally, making the wetting diagram does the analysis of wetting mode, and combines with the possible mechanism which we propose. Explain why smooth and rough surfaces have entirely different wetting behavior and adhesion in the degree of silanization.
[1] Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.; McCarthy, T. J., Ultrahydrophobic and Ultralyophobic Surfaces:Some Comments and Examples. Langmuir 1999, 15, 3395-3399.
[2] Oner, D.; McCarthy, T. J., Ultrahydrophobic Surface – Effect of Topography Length Scales on Wettability. Langmuir 2000, 16, 7777-7782.
[3] Fujishima, A.; Zhang, X., Titanum Dioxide Photocatalysis: Present Situation and Future Approaches. Comptes Rendus Chimie 2006, 9, 750-760.
[4] Sun T.; Feng L.; Gao X.; Liang L., Bioinspired Surfaces with Special Wettability. Accounts Chem. Res. 2005, 38, 644-652.
[5] Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion. Accounts Chem. Res. 2010, 43, 368-377.
[6] Liu X.; Liang Y.; Zhou F.; Liu W., Extreme wettability and tunable adhesion: biomimicking beyond nature? Soft Matter 2012, 8, 2070-2086.
[7] Barthlott, W.; Neinhuis, C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta 1997, 202, 1-8.
[8] Neinhuis, C.; Barthlott, W., Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces. Ann. Bot. 1997, 79, 667-677.
[9] Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal Effect: A Superhydrophobic State With High Adhesive Force. Langmuir 2008, 24, 4114-4119.
[10] Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic Alihned Polystyrene Nanotube Films with High Adhesive Force. Adv. Mater. 2005, 12, 1977-1981.
[11] Feng, X.; Jiang, L., Design and Creation of Superwetting/ Antiwetting Surfaces. Adv. Master. 2006, 18, 3063-3078.
[12] Blossey, R., Self-cleaning Surfaces – Virtual Realities, Nature Materials 2003, 2, 301-306.
[13] Zhai, L.; Berg, M.; Cebeci, F.C.; Kim, Y.; Milwid, J. M.; Rubner, M. F.; Cohen, R. E., Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle. Nano Lett. 2006, 6, 1213-1217.
[14] Shiu, J. Y.; Kuo, C. W.; Chen, P.; Mou, C. Y., Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chem. Mater. 2004, 16, 561-564.
[15] Marmur, A., The Lotus Effect: Superhydrophobicity and Metastability. Langmuir 2004, 20, 3517-3519.
[16] Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988-994.
[17] Cassie, A. B. D.; Baxter, S., Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546-551.
[18] Vansant, E. F.; Van Der Voort, P.; Vrancken, K. C., Characterization and Chemical Modification of the Silica Surface. Elsevier: Amsterdam, 1995.
[19] Plueddeman, E. P., Silane Coupling Agents. Plenum Press: New York, 1991.
[20] Pellerite, M. J.; Wood, E. J.; Jones, V. W., Dynamic Contact Angle Studies of Self-Assembled Thin Films from Fluorinated Alkyltrichlorosilanes. J. Phys. Chem. B 2002, 106, 4746-4754.
[21] Vallant, T.; Kattner, J.; Brunner, H.; Hoffmann, H., Investigation of the Formation and Structure of Self-Assembled Alkylsiloxane Monolayers on Silicon Using in Situ Attenuated Total Reflection Infrared Spectroscopy. Langmuir 1999, 15, 5339-5346.
[22] Chen, L. J.; Tsai, Y. H.; Liu, C. S.; Chiou, D. R.; Yeh, M. C., Effect of Water Content in Solvent on the Critical Temperature in the Formation of Self-assembled Hexadecyltrichlorosilane Monolayers on Mica. Chem. Phys. Lett. 2001, 346, 241-245.
[23] Jesionowski, T.; Krysztafkiewicz, A., Influence of Silane Coupling Agents on Surface Properties of Precipitated Silicas. Appl. Surf. Sci. 2001, 172, 18-32.
[24] McGovern, M. E.; Kallury, K. M. R.; Thompson, M., Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane. Langmuir 1994, 10, 3607-3614.
[25] 張鑑祥; 楊毓民, 分子層級的薄膜表面型態控制-逐層組裝技
術. 化工技術 2004, 12,135-144.
[26] Chen, D., Anti-reflection(AR) coating made by sol-gel processes: A review. Solar Energy Materials & Solar Cells 2001, 68, 313-316.
[27] Yoldas, B. E., Investigations of porous oxides as an antireflective coating for glass surfaces, Applied Optics 1980, 19, 1425-1429.
[28] 王武敬, 光學機能性奈米高分子材料於平面顯示器抗反射光學塗裝之應用. 化工資訊與商情 第33期 2006, 54-62.
[29] Xi, J.; Jiang, L., Biomimic Superhydrophobic Surfaces with High Adhesive Forces. Ind. Eng. Chem. Res. 2008, 47, 6354–6357.
[30] Zhao, W.; Wang, L.; Xue, Q., Fabrication of Low and High Adhesion Hydrophobic Au Surfaces with Micro/Nano-Biomimetic Structures. J. Phys. Chem. C 2010, 114, 11509-11514.
[31] Oner, D.; McCarthy, T. J., Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000, 16, 7777-7782.
[32] Huang, X. J.; Kim, D. H.; Im, M.; Lee, J. H.; Yoon, J. B.; Choi, Y. K., “Lock-and-Key” Geometry Effect of Patterned Surfaces: Wettability and Switching of Adhesive Force. Small 2009, 5, 90-94.
[33] Lai, B. Y.; Gao, X.; Zhuang, H.; Huang, J.; Lin, C.; Jiang, L., Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. Adv. Mater. 2009, 21, 3799-3803.
[34] Lee, W.; Park, B. G.; Kim, D. H.; Ahn, D. J.; Park, Y.; Lee, S. H.; Lee, K. B., Nanostructure-Dependent Water-Droplet Adhesiveness Change in Superhydrophobic Anodic Aluminum Oxide Surfaces: From Highly Adhesive to Self-Cleanable. Langmuir, 2010, 26, 1412-1415.
[35] Park, B. G.; Lee, W.; Kim, J. S.; Lee K. B., Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010,370, 15-19.
[36] Zhao, X. D.; Fan H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-Dependent Tunable Adhesion of Superhydrophobic MnO2
Nanostructured Film Langmuir, 2011, 27, 3224-3228.
[37] Song, X. Y.; Zhai, J.; Wang, Y. L.; Jiang, L., Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties. J. Phys. Chem. B 2005, 109, 4048-4052.
[38] Boduroglu, S.; Cetinkaya, M.; Dressick, W. J.; Singh, A.; Demirel, M. C., Controlling the Wettability and Adhesion of Nanostructured Poly-(p-xylylene) Films. Langmuir 2007, 23, 11391-11395.
[39] Balu, B.; Breedveld, V.; Hess, D. W., Fabrication of “Roll-off” and “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing. Langmuir 2008, 24, 4785-4790.
[40] Khoo, H. S.; Tseng, F. G., Engineering the 3D Architecture and Hydrophobicity of Methyltrichlorosilane Nanostructures. Nanotechnology 2008, 19, 345603.
[41] Lai, Y.; Lin, C.; Huang, J.; Zhuang, H.; Sun, L.; Nguyen, T., Markedly Controllable Adhesion of Superhydrophobic Spongelike Nanostructure TiO2 Films. Langmuir 2008, 24, 3867-3873.
[42] Liu, X.; Ye, Q.; Yu, B.; Liang, Y.; Liu, W.; Zhou, F., Switching Water Droplet Adhesion Using Responsive Polymer Brushes. Langmuir 2010, 26, 12377–12382.
[43] Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K., Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir 2002, 18, 5818-5822.
[44] Chen, Y.; He, B.; Lee, J.; Patankar, N. A., Anisotropy in the Wetting of Rough Surfaces. J. Colloid Interface Sci. 2005, 281, 458-464.
[45] Zheng, Y.; Gao, X.; Jiang, L., Directional Adhesion of
Superhydrophobic Butterfly Wings. Soft Matter 2007, 3, 178-182.
[46] Sun, G.; Fang, Y.; Cong, Q.; Ren, L. Q., Anisotropism of the Non-Smooth Surface of Butterfly Wing. J. Bionic Eng. 2009, 6, 71-76.
[47] Zhang, J.; Cheng, Z.; Zheng, Y.; Jiang, L., Ratchet-Induced Anisotropic Behavior of Superparamagnetic Microdroplet. Appl. Phys. Lett. 2009, 94, 144104.
[48] Samuel, B.; Zhao, H.; Law, K. Y., Study of Wetting and Adhesion Interactions between Water and Various Polymer and Superhydrophobic Surfaces. J. Phys. Chem. C 2011,115, 14852–14861.
[49] Lin, Y. H.; Su, K. L.; Tsai, P. S.; Chuang, F. L.; Yang, Y. M., Fabrication and Characterization of Transparent
Superhydrophilic/Superhydrophobic Silica Nanoparticulate Thin Films. Thin Solid Films 2011, 519, 5450-5455.
[50] 莊峯琳, 濕潤性梯度表面上微液滴傳輸行為及黏著性之研究. 國立成功大學化學工程學系碩士論文 2007.
[51] 蘇愷翎, 二氧化矽奈米粒子薄膜之製備及其抗反射/超親水/超疏
水特性之探討. 國立成功大學化學工程學系碩士論文 2011.
[52] Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F., Transparent Superhydrophobic Films Based on Silica Nanoparticles. Langmuir 2007, 23, 7293-7298.
[53] Hsieh, C. T.; Wu, F. L.; Chen, W. Y., Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Materials Chemistry and Physics 2010, 121, 14-21.
[54] Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E., Designing Superoleophobic Surfaces. Science 2007, 318, 1618-1622.