簡易檢索 / 詳目顯示

研究生: 郭秉綸
Kuo, Bing-Lun
論文名稱: 考慮非線性趕工時間─成本函數下的最佳趕工決策
Optimal Compression Decision-making Concerning Nonlinear Compression Time-cost Function
指導教授: 潘南飛
Pan, Nang-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 136
中文關鍵詞: 時間-成本權衡模式多目標規劃時間-成本-品質-安全權衡模式專案趕工問題模糊理論
外文關鍵詞: Time-cost trade-off, multi-objective, time-cost-quality-safety model, project crashing problem, fuzzy logic
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 營建工程的施工階段存在許多無可避免或不可預期的不確定因素,可能使作業施工日期延後,進而造成整體工程進度落後。因此,管理者或承包商須決定趕工計畫之可行性,趕工情況下可能導致成本增加、品質降低、意外風險提升等問題。本研究針對專案趕工之時間、成本、品質與安全等四項主要因素來分析趕工問題,以時間與成本建立雙目標權衡模式並加入品質門檻限制及作業安全成本考量,獲得權衡下兼顧品質及安全的最佳趕工決策。
    本研究所提出之模式係以非線性函數考量時間與成本間之關係,相較於線性函數而言,更符合實際專案趕工時間與成本的合理關係。此外,考量專案執行過程可能面臨影響時間或成本之不確定性因素,使得模式求解結果不見得與實際情況完全相符,故本研究亦提出模糊趕工模式,將模糊理論導入模式中來處理趕工期間所面臨不確定性的時間與成本問題。

    There are lots of inevitable or unpredictable uncertain factors that might happen during construction phase, which may cause consturction progress fall behind schedule. Therefore, project managers or contractors need to set a catch-up plan, which consider the costs additions, quality losses, and risk arising, that can be applied in the project. To find the suitable plan, this study focuses on the four main factors, which are duration, costs, quality, and safety, using these main factors to analyze the project compression problems. Furthermore, this study propose a time-cost trade-off model and also take the quality performance threshold and costs of safety into consideration. As a result, the trade-off solution might take both quality and safety into account, making sure that the construction project will proceed smoothly.
    This study consider the time-cost relation via non-linear function. It’s more reasonable than using linear function to calculate the costs related on duration. Additionally, to correspond with the practice, this study also import the fuzzy set theory into the model, making sure that the linguistic description can be applied to it. That is, the proposed fuzzy model can output fuzzy cost and time solutions to face the uncertainty in practice during the crash duration.

    目錄 摘要 I Extended Abstract II INTRODUCTION III MATERIALS AND METHODS III RESULTS AND DISCUSSION IV CONCLUSION VI 誌謝 VII 目錄 VIII 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究流程與架構 4 第二章 文獻回顧 7 2.1 時間與成本之權衡 7 2.1.1小結 10 2.2 時間、成本與品質之趕工模式 10 2.2.1小結 12 2.3 時間、成本與安全之趕工模式 13 2.3.1小結 15 2.4 成本函數形式 16 2.4.1小結 18 2.5 模糊數學規劃 19 2.5.1小結 20 2.6 多目標數學規劃 21 2.6.1小結 24 2.7 模糊多目標規劃 25 2.7.1小結 28 第三章 研究方法 29 3.1 時間與成本之權衡分析 29 3.1.1 時間與成本權衡之方案選擇 29 3.1.2 要徑法 31 3.1.3時間與成本之權衡 41 3.1.4小結 43 3.2趕工時間─成本函數 44 3.3 時間與成本之權衡分析考量品質與安全因素 46 3.3.1 品質指標值之訂定 46 3.3.2 風險與安全因素 49 3.4 多目標規劃求解 53 3.5 可能性規劃 55 3.5.1 模糊數學運算 55 3.5.2 模糊數學規劃問題 57 3.5.3小結 59 第四章 模式建立 60 4.1模式流程 60 4.2趕工作業方案的時間─成本非線性函數關係 62 4.3明確型非趕工模式 63 4.4明確型趕工模式 65 4.4.1最小化時間模式 65 4.4.2最小化成本模式 67 4.4.3品質限制式 68 4.4.4安全成本 70 4.4.5時間、成本、品質與安全模式小結 70 4.4.6多屬性效益法求解多目標權衡問題 71 4.5模糊梯形數學規劃之改良 73 4.5.1模糊型趕工模式 77 第五章 範例應用與探討 80 5.1 範例一 80 5.1.1非趕工情況 89 5.1.2明確型趕工情況 90 5.1.3小結 105 5.2範例二 106 5.2.1模糊型趕工情況 108 第六章 結論與建議 115 6.1結論與貢獻 115 6.2後續研究建議 117 參考文獻 118 附錄 127 附錄1. 明確型範例工期資料 127 附錄2. 明確型範例成本資料 129 附錄3.雙元變數整數規劃限制式 131 3.1雙元變數之訂定 131 3.2以雙元變數限制各作業方案之工期選擇 132 3.3以雙元變數限制各作業方案之成本選擇 133 3.4以雙元變數限制各作業方案之品質分數 134 附錄4.明確型範例品質資料 135

    1. Akintoye, A.S., and MacLeod, M.J., “Risk analysis and management in construction”, International Journal of Project Management, Vol. 15, Iss. 1, 31-38, 1997.
    2. Akintoye, A., “Analysis of factors influencing project cost estimating practice”, Construction Management and Economics, Vol. 18, Iss. 1, 77-89, 2000.
    3. Afshar, A., Kaveh, A., and Shoghli, O.R., “Multi-objective optimization of time-cost-quality using multi-colony ant algorithm”, Asian Journal of Civil Engineering (Building and Housing), Vol. 8, No. 2, 113-124, 2007.
    4. Abbasbandy, S., and Hajjari, T., “A new approach for ranking of trapezoidal fuzzy numbers”, Computers & Mathematics with Applications, Vol. 57, Issue 3, 413-419, 2009.
    5. Babu, A.J.G., and Suresh, N., “Project management with time, cost, and quality considerations”, Journal of Operational Research, Vol. 88, Iss. 2, 320-327, 1996.
    6. Carr, V., Tah, J.H.M., “A fuzzy approach to construction project risk assessment and analysis: construction project risk management system”, Advances in Engineering Software, Vol. 32, Issues 10-11, 847-857, 2001.
    7. Chen, S.H., and Wang, C.C., “Fuzzy distance using fuzzy absolute value”, The International Conference on Machine Learning and Cybernetics, 3049-3051, 2009.
    8. Chen, S.P., and Tsai, M.J., “Time-cost trade-off analysis of project networks in fuzzy environments”, European Journal of Operational Research, Vol. 212, Iss. 2, 386-397, 2011.
    9. Deep, K., Singh, K.P., Kansal, M.L., and Mohan, C., “An interactive method using genetic algorithm for multi-objective optimization problems modeled in fuzzy environment”, Expert Systems with Applications, Vol. 38, Iss. 3, 1659-1667, 2011.
    10. Diao, X., Li, H., Zeng, S., Tam, V.W.Y., and Guo, H., “A Pareto Multi-objective optimization approach for solving time-cost-quality tradeoff problems”, Technological and Economic Development of Economy, Vol. 17, Iss. 1, 22-41, 2011.
    11. Dutta, D., and Kumar, P., “Fuzzy inventory model without shortage using trapezoidal fuzzy number with sensitivity analysis”, Journal of Mathematics, Vol. 4, Iss. 3, 32-37, 2012.
    12. El-Rayes, K., and Moselhi, O., “Impact of rainfall on the productivity of highway construction”, Journal of Construction Engineering and Management, Vol. 127, Iss. 2, 125-131, 2001.
    13. El-Rayes, K., and Kandil, A., “Time-cost-quality trade-off analysis for highway construction”, Journal of Construction Engineering and Management, Vol. 131, Iss. 4, 477-486, 2005.
    14. Eshtehardian, E., Afshar, A., and Abbasnia, R., “Fuzzy-based MOGA approach to stochastic time-cost trade-off problem”, Automation in Construction, Vol. 18, Iss. 5, 692-701, 2009.
    15. Ebrahimnejad, A., and Tavana, M., “A novel method for solving linear programming problems with symmetric trapezoidal fuzzy numbers”, Applied Mathematical Modelling, Vol. 38, Issues 17-18, 4388-4395, 2014.
    16. Falk, J.E., and Horowitz, J.L., “Critical path problems with concave cost-time curves”, Management Science, Vol. 19, No. 4, 446-455, 1972.
    17. Feng, C.W., Liu, L., and Burns, S.A., “Using genetic algorithms to solve construction time-cost trade-off problems”, Journal of Computing in Civil Engineering, Vol. 11, Iss. 3, 184-189, 1997.
    18. Feng, C.W., Liu, L., and Burns, S.A., “Stochastic construction time-cost trade-off analysis”, Journal of Computing in Civil Engineering, Vol. 14, Iss. 2, 117-126, 2000.
    19. Garvin, D.A., “What does “Product Quality” really mean? ”, Sloan Management Review, Vol. 26, No. 1, 25-43, 1984.
    20. Ghazanfari, M., Yousefli, A. Jabal Ameli, M.S., and Bozorgi-Amiri A., “A new approach to solve time-cost trade-off problem with fuzzy decision variables”, The International Journal of Advanced Manufacturing Technology, Vol. 42, Iss. 3, 408-414, 2009.
    21. Gupta, A., and Kumar, A., “A new method for solving linear multi-objective transportation problems with fuzzy parameters”, Applied Mathematical Modelling, Vol. 36, Iss. 4, 1421-1430, 2012.
    22. Kaming, P.F., Olomolaiye, P.O., Holt, G.D., and Harris, F.C., “Factors influencing construction time and cost overruns on high-rise projects in Indonesia”, Construction Management and Economics, Vol. 15, Iss. 1, 83-94, 1997.
    23. Khang, D.B., and Yin Mon Myint, “Time, cost and quality trade-off in project management: a case study”, International Journal of Project Management, Vol. 17, Iss. 4, 249-256, 1999.
    24. Kim, G.H., An, S.H., and Kang, K.I., “Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning”, Building and Environment, Vol. 39, Iss. 10, 1235-1242, 2004.
    25. Kalhor, E., Khanzadi, M., Eshtehardian, E., and Afshar, A., “Stochastic time-cost optimization using non-dominated archiving ant colony approach”, Automation in Construction, Vol. 20, Iss. 8, 1193-1203, 2011.
    26. Kaur, A., and Kumar, A., “A new method for solving fuzzy transportation problems using ranking function”, Applied Mathematical Modelling, Volume 35, Iss. 12, 5652-5661, 2011.
    27. Kumar, A., Kaur, J., and Singh, P., “A new method for solving fully fuzzy linear programming problems”, Applied Mathematical Modelling, Vol. 35, Iss. 2, 817-823, 2011.
    28. Kaur, A., and Kumar, A., “A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers”, Applied Soft Computing, Vol. 12, Iss. 3, 1201-1213, 2012.
    29. Kim, J.Y., Kang, and C.W., Hwang, I., “A practical approach to project scheduling: considering the potential quality loss cost in the time-cost tradeoff problem”, International Journal of Project Management, Vol. 30, Iss. 2, 264-272, 2012.
    30. Liu, L., Burns, S.A., and Feng, C.W., “Construction time-cost trade-off analysis using LP/IP hybrid method”, Journal of Construction Engineering and Management, Vol. 121, Iss. 4, 446-454, 1995.
    31. Liu, S.T., “Fuzzy activity times in critical path and project crashing problems”, Cybernetics and Systems: An International Journal, Vol. 34, Issue 2, 161-172, 2003.
    32. Loushine, T.W., Hoonakker, P.L.T., Carayon, P., and Smith, M.J., “Quality and safety management in construction”, Total Quality Management, Volume 17, No. 9, 1171-1212, 2006.
    33. Liu, L., and Zhu, K., “Improving cost estimates of construction projects using phased cost factors”, Journal of Construction Engineering and Management, Vol. 133, Iss. 1, 91-95, 2007.
    34. Lotfi, F.H., Allahviranloo, T., Jondabeh, M.A., and Alizadeh, L., “Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution”, Applied Mathematical Modelling, Vol. 33, Iss. 7, 3151-3156, 2009.
    35. Mohamed, A., and Celik, T., “An integrated knowledge-based system for alternative design and materials selection and cost estimating”, Expert Systems with Applications, Vol. 14, Iss. 3, 329-339, 1998.
    36. Maleki, H.R., Tata, M., and Mashinchi, M., “Linear programming with fuzzy variables”, Fuzzy Sets and Systems, Vol. 109, Iss. 1, 21-33, 2000.
    37. Mohamed, A., and Celik, T., “Knowledge based-system for alternative design, cost estimating and scheduling”, Knowledge-Based Systems, Volume 15, Iss. 3, 177-188, 2002.
    38. Marler, R.T., and Arora, J.S., “The weighted sum method for multi-objective optimization: new insights”, Structural and Multidisciplinary Optimization, Vol. 41, Iss. 6, 853-862, 2010.
    39. Odeyinka, H.A., and Yusif, A., “The causes and effects of construction delays on completion cost of housing projects in Nigeria”, Journal of Financial Management of Property and Construction, Vol. 2, Iss. 3, 31-44, 1997.
    40. Pan, N.F., “Assessment of productivity and duration of highway construction activities subject to impact of rain”, Expert Systems with Applications, Vol. 28, Iss. 2, 313-326, 2005.
    41. Pan, N.F., Hadipriono, F.C., and Whitlatch, E., “A fuzzy reasoning knowledge-based system for assessing rain impact in highway construction scheduling: Part 1. Analytical model”, Journal of Intelligent & Fuzzy Systems, Vol. 16, No. 3, 157-167, 2005.
    42. Pan, N.F., Hadipriono, F.C., and Whitlatch, E., “A fuzzy reasoning knowledge-based system for assessing rain impact in highway construction scheduling: Part 2. Development and validation of the system”, Journal of Intelligent & Fuzzy Systems, Vol. 16, No. 3, 169-179, 2005.
    43. Rogalska, M., Bożejko, W., and Hejducki, Z., “Time/cost optimization using hybrid evolutionary algorithm in construction project scheduling”, Automation in Construction, Vol. 18, Iss. 1, 24-31, 2008.
    44. Shahin, A., AbouRizk, S.M., and Mohamed, Y., “Modeling weather-sensitive construction activity using simulation”, Journal of Construction Engineering and Management, Vol. 137, Iss. 3, 238-246, 2011.
    45. Shrivastava, R., Singh, S., and Dubey, G.C., “Multi objective optimization of time cost quality quantity using multi colony”, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 16, 773-784, 2012.
    46. Shekarian, E., Glock, C.H., Amiri, S.M.P., and Schwindl, K., “Optimal manufacturing lot size for a single-stage production system with rework in a fuzzy environment”, Journal of Intelligent & Fuzzy Systems, Vol. 27, No. 6, 3067-3080, 2014.
    47. Sharma, U., “A new method for solving fully fuzzy linear programming problem”, International Journal of Science and Research, Vol. 4, Iss. 7, 428-430, 2015.
    48. Salari, M., Bagherpour M., and Reihani M.H., “A time-cost trade-off model by incorporating fuzzy earned value management: A statistical based approach”, Journal of Intelligent & Fuzzy Systems, Vol. 28, No. 4, 1909-1919, 2015.
    49. Sahoo, N.K., “Fuzzy inventory model with exponential demand and time-varying deterioration”, Global Journal of Pure and Applied Mathematics, Vol. 12, No. 3, 2573-2589, 2016.
    50. Sharbatdar, M.K., Talatahari, S., and Mousavi, M.R., “Developing new charged system search-based algorithm: application in the time-cost trade-off problems”, The Turkish Online Journal of Design, Art and Communication, Vol. 6, August Special Edition, 1773-1788, 2016.
    51. Tareghian, H.R., and Taheri S.H., “On the discrete time, cost and quality trade-off problem”, Applied Mathematics and Computation, Vol. 181, Iss. 2, 1305-1312, 2006.
    52. Wang, J., Yuan, H., “Factors affecting contractors’ risk attitudes in construction projects: Case study from China”, International Journal of Project Management, Vol. 29, Iss. 2, 209-219, 2011.
    53. Wanberg, J., Harper, C., Hallowell, M.R., and Rajendran, S., “Relationship between construction safety and quality performance”, Journal of Construction Engineering and Management, Vol. 139, Iss. 10, 1-10, 2013.
    54. Yang, L., and Shi, J.J., “Experimental study on the impact of rainfall on RCC construction”, Journal of Construction Engineering and Management, Volume 136, Iss. 5, 477-483, 2010.
    55. Zhi, H., “Risk management for overseas construction projects”, International Journal of Project Management, Vol. 13, Iss. 4, 231-237, 1995.
    56. Zhang, H., and Xing, F., “Fuzzy-multi-objective particle swarm optimization for time-cost-quality tradeoff in construction”, Automation in Construction, Vol. 19, Iss. 8, 1067-1075, 2010.
    57. 行政院公共工程委員會,「公共建設工程經費估算編列手冊」, 2000。
    58. 林耀煌,「營建工程施工規劃與管理控制」,修訂四版,長松出版社,1999。
    59. 林楨中與顏聰,「營造工程安衛費用編列合理化及安衛監造查核實務之探討」,一版一刷,勞動部勞動及職業安全衛生研究所,2015。
    60. 陳文喜,「模糊集合理論在經濟性分析上的應用─模糊經濟性分析法」,技術學刊,第二卷,第一期,175-182,1987。
    61. 許志義,「多目標決策」,五南圖書出版股份有限公司,2003。
    62. 黃毓中,「兩梯形模糊數相乘之模糊數及其逼近」,碩士論文,國立台南大學應用數學系,2011。
    63. 楊曜紅、汪應洛與王能民,「工程項目工期成本質量模糊均衡優化研究」,系統工程理論與實踐,第7期,112-117,2006。

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE