簡易檢索 / 詳目顯示

研究生: 費文新
Verma, Deepanshu
論文名稱: 兩顆沿流線向液滴碰撞疏水性平板的現象分析
Two Streamwise Drops Impinging onto a Hydrophobic Plate
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 148
中文關鍵詞: 液滴撞擊滴落間隔鋪展回彈傾斜撞擊
外文關鍵詞: Drop impingement, Drop spacing, Spreading, Rebound - off, Oblique impingement
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水為工作流體,主要實驗參數為初始液滴直徑(di)、液滴韋伯數(We)、液滴撞擊時間(△t)、平板粗糙度以及平板傾斜角度(ɸ)。本研究的液滴撞擊時間(△t)分為六個條件: △t為單顆液滴撞擊, △t1到△t5為不同時間差的兩顆液滴碰撞。△t1為第二顆液滴在第一顆液滴開始擴展的時間撞擊; △t2為第二顆液滴在第一顆液滴達到最大擴展直徑的時間撞擊;△t3為第二顆液滴在第一顆液滴直徑開始回縮向上的時間撞擊;△t4為第二顆液滴在第一顆液滴直徑達到回縮高點的時間撞擊;△t5為第二顆液滴在第一顆液滴直徑回縮後穩定的時間撞擊。
    在單顆液滴撞擊平板的研究結果顯示,液滴撞擊在高粗糙度的平板時,並沒有回彈的現象產生,但液滴撞擊在低粗糙度的平板(疏水性表面),會有回彈的現象發生;對比液滴韋伯數We = 50和60,可發現撞擊現象相似。兩顆沿流線向液滴撞擊在高粗糙度的平板時,也沒有發生回彈的現象,但在△t2的條件下,可發現液滴在收縮的過程,會有最大高度的現象產生。當兩顆沿流線向液滴撞擊在低粗糙度的平板(疏水性表面)時, △t1與△t2的條件可觀察到液滴收縮之後的回彈與斷裂現象,但△t3到△t5的條件,由於增加兩顆液滴撞擊的時間差,因此第一顆液滴會在收縮與回彈的過程與第二顆液滴進行碰撞;此時會由於第二顆液滴向下的動量與第一顆液滴回彈向上的動量相互抵銷,因此沒有產生兩顆液滴撞擊之後的回彈與斷裂現象。

    The Investigation of the dynamic effect of the water drop on the flat plate was performed. The drops were generated using the free-falling drop technique with the drop generator and the drop severance device. While performing the experiment water at 25°C (room temperature) was used as the working fluid and the drop impact velocity on the hydrophobic glass plate was 2 m/s. In our experiment we have specifically focused on the effect of the initial drop diameter (di) and oblique angle (ɸ) of the hydrophobic glass surface on the impact phenomena.
    The investigation considers six different impingement conditions differentiated by the different time intervals (△t), namely Case 1: single drop impingement; Case 2: △t =△t1 (the leading drop starts to spread); Case 3: △t =△t2 (the leading drop spreads to maximum); Case 4: △t =△t3 (the leading drop starts to retract and form peak); Case 5: △t =△t4 (the leading drop retracts to from a dome shape); Case 6: △t =△t5 (the leading drop starts to stabilize). Notably, all of the cases correspond to the approximate same initial drop diameter.
    For the case of the single drop impingement on the different roughness surfaces the surface with high roughness don’t allow the drop to retract back much and the low surface roughness makes the drop rebound-off the surface. The comparison of the 50 and 60 Weber number the impact characteristics were found similar. However, the two-stream wise drop impacting the low roughness surface hydrophobic glass surfaces will rebound-off the surface after spreading but if the time interval between the two drop increases the air gets trapped so the drop stays on the surface even after spreading. For the oblique angle hydrophobic glass surface the two-stream wise drop impacting spreads less and rebounds - off the surface and takes relative long time in comparison with the flat surface to strike back to the surface.
    However, the two streamwise drops impacting on the low roughness surface hydrophobic glass surface will rebound-off the surface after spreading for the cases of △t1 and △t2. The results of △t3 to △t5 shows the merged drop stays on the surface even after spreading.

    Contents I List of Tables III List of Figures IV Nomenclature VII 1. Introduction 1 1.1 Single drop impingement 4 1.1.1 Single drop impingement on solid surface 4 1.1.2 Single drop impinging on the oblique solid surface 7 1.1.3 Single drop impinging on the hydrophobic solid surface 8 1.2 Two drops impinging on the solid surface 9 1.3 Objective 13 2. Experimental apparatus and methods 15 2.1 Two drop generation system 16 2.1.1 Drop stream generator and drop stream severance system 16 2.1.2 Impinged plate system and image capturing system 17 2.2 Drop spacing parameter (t ) 18 2.3 Experimental procedure 20 3. Results and Discussion 22 3.1 Impinging phenomena of a single drop on solid surfaces with different degrees of roughness 22 3.1.1 Variation in drop shape 22 3.1.2 Variation in spreading diameter and vertical height 25 3.2 Impinging phenomena of two drops impinging on the stainless-steel surface with 50 and 60 Weber numbers 30 3.2.1 Variation in drop shape 30 3.2.2 Variation in spreading diameter and vertical height 37 3.3 Impinging phenomena of two drops impinging on hydrophobic glass 51 3.3.1 Variation in drop shape 51 3.3.2 Variation in spreading diameter and vertical height 57 3.4 Impinging phenomena of two drops impinging on hydrophobic glass at an oblique angle of 15° 67 3.4.1 Variation in drop shape 67 3.4.2 Variation in the spreading diameter and vertical height 74 3.5 Contact angle of a single drop and two drops impinging on the hydrophobic glass surface at an oblique angle = 15° 88 3.5.1 Variation of the contact angle 88 3.5.2 Variation between the Өfront and Өback 93 4. Conclusions 95 4.1. Single drop on surfaces with different degrees of roughness 95 4.2. Two streamwise drops impinging on stainless steel at We=50 and We=60 95 4.3. Two streamwise drops impinging on the hydrophobic glass plate 96 4.4. Two streamwise drops impinging on the hydrophobic glass plate at an oblique angle = 15° 96 4.5. Comparison of single and two streamwise drops impinging on the hydrophobic glass plate surface at flat and oblique angles = 15° 97 5. References: 98 Tables and figures 102 Appendix 144

    [1] Thorddsen, S. T, Ethoh, T. G, Takehara, K, “High-Speed Imaging of Drops and Bubbles,” Annu Rev. Fluid Mech., Vol.40, pp.257-285, 2008.
    [2] Worthigton, A. M, “On the Forms Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate,” Proc. R.Soc, Vol.25, pp.261-272, 1876.
    [3] Joung, Y. S, Buie, C. R, “Aerosol Generation by Raindrop Impact on Soil,” Nat. Commun., Vol.6, pp.6083, 2015.
    [4] Mao, T., David, C. S., Kuhn, Tran, H., “Spread and Rebound of Liquid Drops Upon Impact on Flat Surfaces,” AIChE Journal, Fluid Mech., Vol.43, No.9, 1997.
    [5] Gottfried, B. S., Lee, C. J., Bell, K. J., “The Leidenfrost Phenomenon: Film Boiling of Liquid Drops on a Flat Plate”, Int. J. Heat and Mass Transfer, Vol.9, pp.1167-1188, 1966.
    [6] Fujimoto, H., Shiraishi, H., Hatta, N., “Evolution of Liquid/Solid Contact Area of a Drop Impinging on a Solid Surface,” Int. J. Heat and Mass Transfer, Vol.43, pp. 1673-1677, 2000.
    [7] Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake O., Poulikakos D., Megaridis C.M. and Zhao Z., “Wetting Effects on the Spreading of a Liquid Drop Colliding with a Flat Surface: Experiment and Modeling,” Phys. Fluids, Vol.7, No.2, 1995.
    [8] Sikalo, S., Marengo, M., Tropea, C., Ganic, E.N., “Analysis of Impact of Drops on Horizontal Surfaces,” Exp. Thermal and Fluid Sci., Vol.25, pp.503-510, 2002.
    [9] Xu, L., Zhang, W.W., Nagel, S. R., “Drop Splashing on a Dry Smooth Surface,” Physical Review letters, Vol.94, pp. 184505, 2005.
    [10] Wal, R. L. V, Berger, G.M., Mozes, S.D., “The Splash/Non-Splash Boundary Upon a Dry Surface and Thin Fluid Film,” Exp. Fluids, Vol.40, pp.53-59, 2006.
    [11] Yarin, A. L., “Drop impact dynamics: Splashing, Spreading, Receding, Bouncing, Jetting, Fingering and Rebound,” Annu. Rev. Fluid Mech., Vol.38, pp.159-192, 2006.
    [12] Xu, L., “Liquid Drop Splashing on Smooth, Rough and Textured Surfaces,” Physical Review letters, Iss.5, Vol.75, 2007.
    [13] Xu, M., Wang, C., Lu, S., “Experimental Study of a Drop Impacting on a Burning Fuel Liquid Surface,” Exp. Thermal and Fluid Sci., Vol.74, pp.347-353, 2016.
    [14] Watanabe, T., Kuribayashi, I., Honda, T., kanzawa, A., “Deformation and Solidification of a Drop on a Cold Substrate,” Chemical Engineering Sci., No.12, Vol.47, pp.3059-3065, 1992.
    [15] Chandra, S., Avedisian, C.T., “On the Collision of a Drop with a Solid Surface,” Proc. Roy. Soc. London A, Vol.432, pp. 13-41, 1991.
    [16] Range, K., Feuillebois, F., “Influence of Surface Roughness on Liquid Drop Impact,” J. Colloid Interface Sci., Vol.203, pp. 16-30, 1998.
    [17] Sikalo, S., Tropea, C., Ganic, E.N., “Dynamic Wetting Angle of a Spreading Drop,” Exp.Therm. Fluid Sic., Vol.29, pp.795-802, 2005.
    [18] Fujimoto, H., Takuda, H., “Entrapment of Air at 45° Oblique Collision of a Water Drop with a Smooth Solid Surface at Room Temperature,” Int. J. Heat and Mass Transfer. Vol.47, pp. 3301-3305, 2004.
    [19] Li, Z., kong, Q., Ma, X., Zang, D., Guan, X., Ren, X., “Dynamic Effects and Adhesion of Water Drop Impact on Hydrophobic Surfaces: Bouncing or Sticking,” The R. Soc. of Chem., Vol.9, pp.8249-8255, 2017.
    [20] Crick, C. R., Parkin, I. P., “Water Drop Bouncing-a Definition for Superhydrophobic Surfaces,” The R. Soc. of Chem., Vol.47, pp.12059-12061, 2011.
    [21] Quan, Y. Y., Zhang, L. Z., Qi, R. H., Cai, R. R., “Self-Cleaning of Surfaces: The Role of Surface Wettability and Dust Types,” Nature Sci. Report, Vol.6, pp.38239, 2016.
    [22] Brenn, G., Valkovska, D., Danov, K. D., “The Formation of Satellite Drops by Unstable Binary Drop Collisions,” Phys. Fluids, Vol.13, pp.2463, 2001.
    [23] Post, S. L., Abraham, J., “Modelling the Outcome of Drop-Drop Collisions in Diesel Sprays,” Int. J. Multiphase Flow, Vol.28, pp.997-1019, 2002.
    [24] Krishnan, K. G., Loth, E., “Effects of Gas and Drop Characteristics on Drop-Drop Collision Outcomes Regimes,” Int. J. Multiphase Flow, Vol.77, pp. 171-186, 2015.
    [25] Tong, A.Y., Kasliwal, S., Fujimoto, H., “On the Successive Impingement of Drops onto a Substrate,” Numer. Heat transfer, Part A, Vol.52, pp.531-548, 2007.
    [26] Fujimoto, H., Ogino, T., Takuda, H., Hatta, N., “Collision of a Drop with a Hemispherical Static Drop on a Solid,” Int. J. Multiphase Flow, Vol.27, No.5, pp. 1227-1245, 2001.
    [27] Fujimoto, H., Ito, S., Takezaki, I., “Experimental Study of Successive Collision of Two Water Drops with a Solid,” Exp. Fluids, Vol.33, pp. 500-502, 2002.
    [28] Fujimoto, H., Takezaki, I., Shiotani, Y., Tong, A., Takuda, H., “Collision Dynamics of Two Drops Impinging Successively onto a Hot Solid,” ISIJ Int., Vol.44, pp. 1046-1056, 2004.
    [29] Fujimoto, H., Ogino, T., Hatta, N., Takuda, H., “Numerical Simulation of Successive Collision of Two Liquid Drops with a Solid Wall,” ISIJ Int., Vol. 41, pp. 454-459, 2001.
    [30] Fujimoto, H., Tong, A., Takuda, H., “Interaction Phenomena of Two Water Drops Successively Impacting onto a Solid Surface,” Int. J. Thermal Sci., Vol.47, pp.229-236, 2008.

    下載圖示 校內:2023-07-16公開
    校外:2023-07-16公開
    QR CODE