簡易檢索 / 詳目顯示

研究生: 廖展豐
Liao, Jung-Fong
論文名稱: 砂質土層承受地震荷重之試驗沉陷分析與數值模擬
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 119
中文關鍵詞: 砂質土層
相關次數: 點閱:88下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於我國位處於太平洋地震帶西環,每年大小地震不斷,而在台灣西南部沖積平原中,仍然有相當多的斷層存在,一旦發生強烈的地震,沿海地震下陷區之沖積飽和砂土層,極易發生液化並引發災害。
    1999年921集集大地震造成我國災情慘重,除了奪走二千餘條寶貴生命外,也發生多處建物倒塌、港灣液化、邊坡滑動。其中,員林、彰濱等地液化情形相當嚴重,更引起國人對地震液化災害與防制的關注與重視。
      基於此,本研究使用動態三軸試驗針對砂質土壤資料分別施做反覆三軸不排水試驗、壓密排水試驗、壓密不排水試驗及定值平均正向有效應力試驗,進而回饋於有限元素分析程式(SUMDES)中,藉此來探討與模擬土壤液化後之沉陷量、孔隙水壓變化及地表加速度。另外,經由經驗式液化沉陷量的分析與現地觀測沉陷量來進行比較與探討。研究結果顯示,本研究藉由數值模擬所得之沉陷量較經驗式更接近於現地觀測之液化後沉陷量,本研究完成近60組各不同應力路徑之三軸試驗,並成功的運用數值模式之模擬出沉陷量,將可擴展應用於大地工程理論與實務設計時之參考。

    none

    摘要....... I 誌謝....... II 目錄...... III 表目錄... VII 圖目錄... VIII 符號說明 XII 第一章 緒論 1 1-1 前言 1 1-2 研究目的與內容 4 1-3 研究流程 5 第二章 文獻回顧 6 2-1 液化的機制 6 2-2 反覆三軸之試驗原理 6 2-3 影響飽和砂性土壤液化的因素 10 2-4 橡皮膜貫入效應 16 2-5 液化後下限量的評估 20 2-6 液化後下陷量分析模式建立 24 第三章 試驗內容與程序 31 3-1 試驗之土樣 31 3-2 三軸試驗之應力路徑 33 3-3 試體準備及製作 34 3-3-1 三軸試體之飽和程序 35 3-3-2 三軸試體之壓密 36 3-4 試驗設備 36 3-4-1 控制系統 36 3-4-2 載重系統 37 3-4-3 三軸室及體積變化儀 37 3-4-4 感應器及訊號調整器系統 37 3-4-5 介面轉換系統 37 3-4-6 電腦系統 38 3-5 試驗內容 39 第四章 試驗結果與討論 43 4-1三軸壓密不排水試驗 43 4-2 三軸壓密排水試驗 45 4-3 三軸不排水反覆剪力試驗 55 4-4均向壓密及解壓試驗 62 4-5 三軸反覆載重之破壞準則 64 4-6 液化阻抗試驗之結果與分析 65 4-6-1 相對密度對液化阻抗之影響 65 4-6-2 過壓密效應對液化阻抗之影響 67 4-6-3 反覆週期對液化阻抗的影響 67 4-6-4 孔隙水壓與時間的關係 67 4-7 橡皮膜貫入效應之計算 71 第五章 土層承受地震荷重之沉陷分析與數值模擬 73 5-1 SUMDES 基本假設 73 5-2 界面擬塑性模式介紹 80 5-2-1 界面擬塑性模式參數的推算 84 5-2-2 實驗室試驗結果模擬 87 5-3 區域特性介紹 91 5-4 案例模擬與分析 93 5-4-1加速度模擬之結果 94 5-4-2 超額孔隙水壓與沉陷的模擬的結果 99 5-5 由經驗式推算之沉陷量分析 102 5-6 經驗式、數值模擬與現地觀測沉陷量比較 104 第六章 結論與建議 105 6-1 結論 105 6-2 建議 106 參考文獻 107

    1. 古志生 (2001) 。CPT土壤分類及液化評估之研究,博士論文,國立成功大學土木工程研究所。
    2. 江澎 (1995) 。飽和砂土動態性質強度之研究-台灣地區砂性土壤,碩士論文,國立交通大學土木工程研究所。
    3. 吳偉特 (1979) 。台灣地區砂性土壤液化潛能之初步分析,土木水利季刊,第六卷,第二期,第39~70頁。
    4. 吳偉特、楊騰芳 (1987) 。細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究,土木水利期刊,第十四卷,第三期,第59 -74頁。
    5. 李旻釗 (2001) 。里港砂添加增黏劑CMC之動力強度探討,碩士論文,國立成功大學土木工程研究所。
    6. 李煜舲 (1998) 。飽和砂土液化特性與孔隙水壓預估之研究,碩士論文,國立交通大學土木工程研究所。
    7. 沈茂松 (1989) 。實用土壤力學實驗,文笙書局。
    8. 林國忠 (1997) 。反負荷重作用下砂性土壤之變形行為研究,碩士論文,國立成功大學土木研究所。
    9. 洪如江 (1998) 。土壤力學試驗,科技圖書股份有限公司。
    10. 紀雲曜 (1997) 。高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究,博士論文,國立成功大學土木工程研究所。
    11. 廖廷勖 (1998) 。過壓密對砂土動態性質及穩定狀態之影響,碩士論文,國立臺灣科技大學營建工程技術研究所。
    12. 蔡攀鰲 (1994) 。土壤力學實驗, 科學技術叢書。
    13. Afifi, S. S., and Woods, R. D. (1971). Long-Term Pressure Effects on Shear Modulus of Soils. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM10, pp.1445-1461.
    14. Baldi, G., and Nova, R. (1984). Membrane Penetration Effects in Triaxial Testing. Journal of Geotechnical Engineering, Vol.110, No.3, pp.403-420.
    15. Bardet, J. P. (1997). Experimental Soil Mechanics. Prentice-Hall, pp.289.
    16. Bolton, M. D. (1987). The Strength and Dilatancy of Sands. Geotechnique 37, No.2, pp.219-226.
    17. Bolton, M. D. (1986). The Strength and Dilatancy of Sands. Geotechnique 36, No.1, pp.65-78.
    18. Constantine, A. S., Bouckovalas, G., and Whitman, R.V. (1991). Analytical Prediction of Earthquake-Induced Permanent Deformations. Journal of Geotechnical Engineering, Vol.117,No.10, pp.1471-1491.
    19. Chung, Y. C., and Wong, I. H. (1982). Soil Dynamics and Earthquake Engineering. Prentice-Hall, pp.887-897.
    20. Goto, S., and Tatsuoka, F. (1988). Effects of End Condition on Triaxial Compressive Strength for Cohesionless Soil. Advanced Triaxial Testing of Soil and Rock, ASTM STP977, pp.692-705.
    21. Holtz, R.D., and Kovacs, W.D. An Introduction to Geotechnical Engineering. Prentice-Hall, pp.571, 1981.
    22. Ishibashi, I., Sherif, M.A., and Cheng, W.L. (1982). The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction. Soil and Foundation, JSSMFE, Vol.22, No.1, pp.39-48.
    23. Ishihara, K. (1993). Liquefaction and Flow Failure During Earthquakes, Geotechnique, Vol.43, No.3, pp.315-415.
    24. Ishihara, K., Tatsuoka, F., and Yasuda, S. (1975). Undrained Deformation and Liquefaction of Sand Under Cyclic Stresses. Soil and Foundation, Vol. 15, pp.29-44.
    25. Ishihara, K., and Yoshimine, M. (1992). Evaluation of Settlement in Sand Deposits Following Liquefaction During Earthquakes. Soil and Foundations, Vol.32, No.1, pp.173-188.
    26. Arulanandan, K., Li, X. S., and Sivathasan, K. (2000).Numerical Simulation of Liquefaction -Induced Deformations. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No.7, pp.657-666,
    27. Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice-Hall.
    28. Lambe, T. W., and Whitman, R. V., (1979). Soil Mechanics. Prentice-Hall.
    29. Lee, K., and Albraisa, A. (1974). Earthquake-Induced Settlements in Saturatedn Sands. Journal of Geotechnical Engineering, ASCE, Vol.100, No.GT4, pp.387-405.
    30. Lee, K.L., and Fitton, J.A. (1969). Factors Affecting the Cylic Loading Strength of Soil. Vibration Effects of Earthquakes on Soil and Foundation, ASTM, STP450, pp.71-96.
    31. Li, X. S., Wang, Z. L., and Shen, C. K. (1992). SUMDES, a Nonlinear Procedure for Response Analysis of Horizontally-Layered Sites Subjected to Multi-Directional Earthquake Loading. Report to the Department of Civil Engineering,University of California, Davis.
    32. Li, X. S., Chen, C. K., and Shen, C. K. (1988). An Automated Triaxial Testing System. Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, pp.95-106.
    33. Mitchell, B. (1971). Tyre cord adhesion. J Inst Rubber Ind, Vol 5, No.4, pp.151-154.
    34. Mulilis, J. P. (1975). The Effects of Method of Sample Preparation on the Stress-Strain Behavior of Sands. Report. U.C.Bekeley Earthquake Engineering Research Center.
    35. Mulilis, J. P., Townsend, E. C., and Horz, R. C. (1978). Triaxial Teating Techniques and Sand Liquefaction. ASTM, STP, pp.265-279.
    36. Nagase, H., and Ishihara, K. (1988). Liquefaction-Induced Compaction and Settlement of sand During Earthquakes. Soils and Foundations, Vol28, No.1, pp.66-76.
    37. Nicholson, P. G., Seed, R. B., and Anwar, H. (1989). Measurement and Elimination of Membrane Compliance Effects in Undrained Triaxial Testing, Earthquake Engineer Research Center, UC Berkeley.
    38. Putnam, J. (2002). Comparison of Numerical Analysis Using Sumdes with MeasuredPost-Liquefaction Settlements. ECI 289D.
    39. Ramana, K. V., and Raju, V. S. (1982). Menbrance Penetration in Triaxial Tests. Journal of Geotechnical Engineering Div., ASCE, Vol.108, No.GT2, pp.305-310.
    40. Sasaki, Y., Towhata, I., Tokida, K., Yamada, K., Matsumoto, H., and Tamari, Y. (1992). “Mechanism of Permanent Displacement of Ground Cause by Seismic Liquefaction,” Soils and Foundations ,Vol.32, No.3, pp.79-96.
    41. Schofield, A. N., and Wroth, C. P. (1968). Critical State Soil Mechanics. Mcgraw-Hill Publishing Company, Great Britain.
    42. Seed, H. B. (1976). Recent Developments in Evaluating the Potental for Soil Liquefaction and Foundation Failures. Proceedings of the Society of Photo-Optical Instrumentation Engineers, pp.60-115.
    43. Seed, H. B., and Lee, K. L. (1966). Liquefaction of Saturated Sands During Cyclic Loading. Journal of the Geotechnical Engineering Division, ASCE, Vol.92, No.SM6, pp.105-134.
    44. Seed, H. B., and Peacock, W. H. (1971). Test procedures for soil liquefaction characteristics. ASCE, Vol.97, pp.1099-1119.
    45. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung R. M. (1985). The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation. Journal of Geotechnical Engineering, ASCE, Vol.111, No.12, pp.1425-1445.
    46. Shen, C. K., Vrymoed, J. L. and Uyeno, C. K. (1977). The Effects of Fines on Liquefaction of Sands. Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp.381-385.
    47. Singh, S. (1996). Liquefaction Characteristics of Silts. Geotechnical and Geological Engineering, Vol.14, pp.1-19.
    48. Tatsuoka, F., and Ishihara, K. (1974). Yielding of Sand in Triaxial Compression. Soils and Foundations, Vol.14, No.2, pp.63-76.
    49. Tatsuoka, F., Iwasaki, T., Tokida, K., Yasuda, S., Hirose, M., and Kon-no, M. (1980). Standard Penetration Tests and Soil Liquefaction Potential Evaluation,” Soil and Foundation, Vol.20, No.4, pp.95-111.
    50. Tatsuoka, F., Sasaki, T., and Yamada, Y. (1984). Settlement in Saturated Sand Induced by Cyclic Undrained Simple Shear. Eighth World Conference on Earthquake Engineering, Vol.3, pp.95-102.
    51. Tokimatsu, K., and Seed H. B. (1987). Evaluation of Settlement in Sands Due to Earthquake Shaking. Journal of the Geotechnical Engineering, ASCE, Vol.113, No.8, pp.861-878.
    52. Wang, Z. L. (1990). Bounding Surface Hypoplasticity Model for Granular Soils and its Application, Ph.D.dissertation, University of California.
    53. Wong, R. T., Seed, H. B., and Chan, C. K. (1975). Cyclic loading Liquefaction of Gravelly Soils. Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.101, No.GT6, pp.571-583.
    54. Xia, H., and Hu, T. (1991). Effects of Saturetion and Back Pressure on Sand Liquefaction. Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362.
    55. Chen, Y. R. (1995). Behavior of a Fine Sand in Triaxial, Torsional and Rotational Shear Tests. Ph.D.dissertation, University of California, Davis.
    56. Yoshimi, Y., Tokimatsu, K., and Hosaka, Y. (1989). Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples. Soils and Foundations, Vol.29, No.1, pp.93-104.

    下載圖示 校內:2005-08-17公開
    校外:2005-08-17公開
    QR CODE