| 研究生: |
花瑋澤 Hua, Wei-Ze |
|---|---|
| 論文名稱: |
週期性反轉鈮酸鋰製程開發及其二次諧波產生與繞射光柵之相關應用 Development of Periodically-Poled Lithium Niobate with Applications in Second Harmonic Generation and Diffraction Gratings |
| 指導教授: |
莊文魁
Chuang, Wen-kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 高電壓極化反轉 、準相位匹配 、繞射光柵 、二階諧波產生 |
| 外文關鍵詞: | Periodically poled Lithium niobate, Quasi phase matching, Diffraction gratings, Second Harmonic Generation |
| 相關次數: | 點閱:82 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
週期性極化反轉鈮酸鋰(Periodically poled Lithium niobate,PPLN)已經廣泛的被應用在非線性頻率轉換,準相位匹配和光參振盪器等…領域之中,製作極化反轉的方式從早期的高溫鋰外擴散法,鈦內擴散法到近年來被廣泛應用的高壓極化法,由於鋰外擴散法和鈦內擴散法皆必需在高溫的情況下製作(約1000oC),且兩者製作出來的反轉深度皆遠不及高電壓極化法,因此本論文的製作方法也是以高電壓極化法為主;由於鈮酸鋰的矯頑電壓高達20(kV/mm),故無法在大氣下直接進行,我們試過三種方法來解決這個問題,分別為絕緣油,高真空以及液態電極,其中又以液態電極的絕緣效果最好,我們最大電壓升至30(kV/mm),也未發生介電崩潰的現象。
我們成功的使用高電壓極化法配合液態電極的絕緣方式,製作出週期60μm、15.5μm和6.7μm的極化反轉光柵,我們使用兩種驗證方式分別為氫氟酸蝕刻法以及光學繞射法。由於氫氟酸對鈮酸鋰+Z面的蝕刻速率遠大於-Z面的蝕刻速率,-Y面的蝕刻速率遠大於+Y面的蝕刻速率,因此晶體放置在氫氟酸中一段時間之後(約5~10分鐘),就可以在光學顯微鏡下觀測出極化的區域與未極化的區域,光學繞射法為將氫氟酸蝕刻過後的週期性反轉鈮酸鋰放置於載台上,使用可見光雷射來量測其繞射情形,可以由光點的分佈推算出其光柵週期,進一步驗證其光柵週期是否正確。在二次諧波產生方面,成功的使用週期6.7μm的PPLN量測出紅外光1064nm倍頻產生出綠光雷射。
We successfully use the high voltage poling with liquid electrode insulation method to fabricate a periodically poled lithium niobate (PPLN). The inverted domain gratings with periods of 60, 15.5, and 6.7μm so designed have. We have successfully used the hydrofluoric acid (HF) etching and optical diffraction techniques to verify the periodicity of inverted domains. The HF etching can be used to reveal the inverted domains microscopically because the etch rates in the +Z and –Y faces are substantially faster than those in the –Z and +Y faces, respectively. On the other hand, optical diffraction offers another alternative method to verify the existence of poled domains by evaluating the corresponding diffraction patterns. For the second harmonic generation, we have successfully demonstrated of using a 1064nm fiber laser for frequency doubling to generate 532 nm green light at room temperature.
第一章
[1]P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Physical Review Letters, Vol. 7, No. 4, 1961.
[2]J.A.Armstrong, N.Blombergen, J.Ducuing, and P. S. Pershan, ”Interaction between light waves in a nonlinear dielectric,” Physical Review, Vol. 127, No. 6, 1962.
[3]J.A.Armstrong, N.Blombergen, J.Ducuing, and P. S. Pershan, ”Interaction between light waves in a nonlinear dielectric, ” Physical Review, Vol. 127, No. 6, 1962.
[4]Jonas Webjorn, Fredrik Laurell And Gunnar Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE PHOTONICS LETTERS, Vol. 1, No. 10, 1989.
[5]M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical Quasi-Phase-Matched Second Harmonic Generation in an Annealed Proton-Exchanged LiNbO3 Waveguide,” IEEE TRANSACTIONS ON QUANTUM ELECTRONICS, Vol. 30, No. 12, 1994.
[6]H. ITO, C. TAKYU, H. INABA, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” ELECTRONICS LETTERS, Vol. 27, No. 14, 1991.
[7]M.Yamada, N.Nada, M.Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Applied Physics Letters, Vol. 62, No. 5, 1993.
[8]L. E. Myers,R. C. Eckardt, M. M. Fejer, R. L. Byer,W. R. Bosenberg and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” Journal of the Optical Society of America B, Vol. 12, No. 11, 1995.
[9]M. Maruyama, H. Seki, Y.Kato and H. Nakajima,S. Kurimura, N.E. Yu, Y. Nomura and K. Kitamura, “Periodical poling by selective nucleation for short-period QPM structures,” OSA/CLEO, 2003.
[10]A. Agronin, Y. Rosenwaks and G. Rosenman, “Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy,” APPLIED PHYSICS LETTERS, Vol. 85, No. 3, 2004.
[11]Michele Manzo, Fredrik Laurell, Valdas Pasiskevicius and Katia Galloa, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” APPLIED PHYSICS LETTERS, Vol. 98, No. 12, 2011.
[12]Ju Won Choi, Jung Hoon Ro, Do-Kyeong Ko and Nan Ei Yu, “Poling Quality Enhancement of PPLN Devices Using Negative Multiple Pulse Poling Method,” Journal of the Optical Society of Korea, Vol. 15, No. 2, 2011.
[13]張永昌“鈮酸鋰準相位匹配倍頻轉換藍、綠光雷射之研製”,國立臺灣大學電機資訊學院光電工程學研究所碩士論文,2000。
[14]盧昶伸“準相位匹配鈮酸鋰光學參量振盪器之研究”,國立臺灣大學電機資訊學院光電工程學研究所碩士論文,2007。
[15]楊宇軒“多週期極化反轉鈮酸鋰帶狀波導綠光雷射晶片之研製”,國立臺灣大學電機資訊學院電子工程學研究所碩士論文,2012。
[16]http://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=0c4335a6-780a-45aa-9998-e8512a613fa1
[17]Company, OSIA, 2009/09.
[18]陳逸豪“利用鈮酸鋰一維非線性光子晶體產生光參共振可調波長雷射光源之研究”,國立台灣大學光電研究所碩士論文,2005。
[19]B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure,” Physical Review, Vol. 76, No. 2, 1949.
[20]R. L. Byer, J. F. Young , and J. S. Feigelson, ”Growth of high-quality LiNbO3 crystal from the congruent melt,” Journal of Applied Physics, Vol. 41, No. 6, 1970.
第二章
[1]陳逸豪,“利用鈮酸鋰一維非線性光子晶體產生光參共振可調波長雷射光源之研究”,國立台灣大學光電研究所碩士論文,2005。
[2]J.A.Armstrong, N.Blombergen, J.Ducuing, and P.S.Pershan, ”Interaction between light waves in a nonlinear dielectric,” Physical Review, Vol. 127, No. 6, 1962.
第三章
[1]R.S.Weis and T.K.Gaylord, “Lithium Niobate :Summary of Physical Properties and Crystal Structure,” Applied Physics A, Vol. 37, No. 4, 1985.
[2]S.O.Kasap, “Optoelectronics and Photonics Principles and Practices,” Prentice Hall.
[3]http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3%20Wafers.html.
[4]J.L.Jackel, C.E.Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Applied Physics Letters, Vol. 41, No. 7, 1982.
[5]K.Yamamoto, Tetsuo, “Characteristics of pyrophosphoric acid proton‐exchanged waveguides in LiNbO3,” Journal of Applied Physics, Vol. 70, No. 11, 1991.
[6]E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid,” IEEE TRANSACTIONS ON LlGHTWAVE TECHNOLOGY, Vol. 11, No. 2, 1993.
[7]E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid,” ELECTRONICS LETTERS, Vol. 26, No. 2, 1990.
[8]E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE TRANSACTIONS PHOTONICS TECHNOLOGY LETTERS, Vol. 3, No. 11, 1991.
[9]M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides,” Journal of Optical Communications, Vol. 9, No. 1, 1988.
[10]A.Y.Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides,” Applied Physics Letters, Vol. 42, No. 8, 1983.
[11]Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 18, No. 4, 2000.
[12]Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol. 2, No. 2, 1996.
[13]Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Applied Optic, Vol. 35, No. 36, 1996.
[14]R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Applied Physics Letters, Vol. 25, No. 8, 1974.
[15]T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides,” Applied Optics, Vol. 30, No. 9, 1991.
[16]J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada, “Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Applied Physics Letters, Vol. 27, No. 1, 1975.
[17]W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Applied Physics Letters, Vol. 33, No. 1, 1978.
[18]T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Applied Physics Letters, Vol. 30, No. 8, 1977.
[19]S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Applied Physics Letters, Vol. 31, No. 11, 1977.
[20]J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,”Applied Physics Letters , Vol. 38, No. 7,1981.
[21]R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Applied Physics Letters, Vol. 33, No. 8, 1978.
[22]Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3μm wavelength,” ELECTRONICS LETTERS, Vol. 32, No. 11, 1996.
[23]Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 8, No. 4, 1996.
第四章
[1]Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-Prism Loss Measurement of Optical Waveguides,” Applied Physics Letters, Vol. 37, No. 3, 1980.
[2]R. G. Hunsperger, Integrated Optics. Berlin: Springer-Verlag, 1984.
[3]R. G. Walker, “Simple and Accurate Loss Measurement Technique for Semiconductor Optical Waveguides,” Electronics Letters, Vol. 21, No. 13, 1985.
[4]Y. Okamura, A. Miki, and S. Yamamoto, “Observation of Wave Propagation in Integrated Optical Circuits,” Applied optics, Vol. 25,No. 19, 1986.
[5]R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Applied Optics, Vol. 12, No. 12, 1973.
[6]C. J. Ma, “Tunable Thermo-Optical Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method,” National Cheng Kung University, Master thesis, 2010.
[7]S. I. Najafi, Introduction to Glass Integrated Optics. Boston: Artech House, 1992.
[8]R. G. Hunsperger, Integrated Optics: Theory and Technology. Berlin: Springer, 2002.
[9]J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Optics Express, Vol. 15, No. 5,2007.
[10]J. M. White and P. F. Heidrich, “Optical waveguide Refractive Index Profiles from Measurement of Mode Indices: A Simple Analysis,” Applied Optics, Vol. 15, No. 1, 1976.
[11]P. Hertel and H. P. Menzler, “Improved Inverse WKB Procedure to Reconstruct Refractive Index Profiles of Dielectric Planar Waveguides,” Applied Physics B, Vol. 15, No. 2, 1980.
第五章
[1]D.H.Jundt, ”Temperature-dependent Sellmeier equation for the index of
refraction, , in congruent lithium niobate,” OPTICS LETTERS, Vol. 22, No.20, 1997.
[2]L. E. Myers,R. C. Eckardt, M. M. Fejer, R. L. Byer,W. R. Bosenberg and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” Journal of the Optical Society of America B, Vol. 12, No. 11, 1995.
[3]G.D.Miller, Ph. D. Thesis,”Periodically Poled Lithium Niobate:Modeling Fabrication and Nonlinear Optical Performance,” Chapter2, Stanford University, 1998.
[4]張永昌,“鈮酸鋰準相位匹配倍頻轉換藍、綠光雷射之研製”,國立臺灣大學電機資訊學院光電工程學研究所碩士論文,2000。
第六章
[1]Min-Ji Jin, Oc-Yeub Jeon, Byeong-Joo Kim and Myoungsik Cha, “Fabrication of Periodically Poled Lithium Niobate Crystal and Poling Quality Evaluation by Diffraction Measurement,” Journal of the Korean Physical Society, Vol. 47, No. 92, 2005.
第七章
[1]Zhenhuan Ye, Qihong Lou, Jingxing Dong, Yunrong Wei, and Lei Lun, “compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals,” Optics Letters,Vol. 30, No.1, 2005.
[2]邱寶賢,“綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究”,國立中央大學光電科學與工程學研究所碩士論文,2009。
[3]Michele Manzo, Fredrik Laurell, Valdas Pasiskevicius and Katia Galloa, “Electrostatic control of the domain switching dynamics in congruent LiNbO3 via periodic proton-exchange,” APPLIED PHYSICS LETTERS, Vol. 98, No. 12, 2011.