| 研究生: |
仁可娜 Rizkiana, Meta Fitri |
|---|---|
| 論文名稱: |
含膽固醇基二量化膠體元對鏡像性螺旋結構體的誘導研究 Enantiomeric Helical Constructions Induced by Dimeric Gelators Derived from Cholesterol |
| 指導教授: |
劉瑞祥
Liu, Jui Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 吡啶 、雙聚物膽固醇 、奈米管結構 、左-右螺旋結構 |
| 外文關鍵詞: | pyridine, dimeric cholesterol, para, meta, nanotube structures, left-right handed helical |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成兩種含膽固醇基團的二聚吡啶衍生物,藉由導入不同位向之苯環和醯胺基鍵結連接吡啶及膽固醇基團,形成對位 (PyPC) 及間位 (PyMC) 之同分異構物,並探討兩種異構物在不同溶劑下形成膠體的特性,根據實驗結果顯示,PyMC比PyPC具有更優異之凝膠化性質。實驗以SEM、TEM、1H-NMR、XRD以及CD進行鑑定兩種化合物形成之乾凝膠型態與堆疊方式,由TEM觀察凝膠表面型態及微結構之結果顯示,分子結構及溶劑性質均對凝膠網狀結構型態有顯著影響。分子設計導入膽固醇基團之有機凝膠體分子可自組裝形成高秩序性的螺旋纖維結構,由結果顯示PyPC於正十二烷醇中形成之纖維鬈曲成奈米管狀結構;值得一提的是,由TEM觀察結果發現此掌性系統中同時具有左旋及右旋結構,SEM觀察亦鑑定出具有螺旋結構的奈米管柱之形成,並從CD分析亦可證明螺旋結構確實存在,根據SEM、TEM的圖像結果可推知左旋與右旋並不相等。
Two dimeric pyridine derivatives containing cholesteryl group were synthesized. The connecting group between cholesterol and pyridine contains benzene rings and amide groups. The structures of the compounds are changed by varying the relative positions of amide groups on the benzene rings (at para and meta). Gelation properties of the synthesized two compounds (PyPC and PyMC) were studied. From gelation results, PyMC has higher gelation ability than PyPC. The results suggest that connecting position affect polarity of molecules, thus it leads to the difference of molecular interaction resulting in different gelation behavior of the two compounds. The morphologies and packing arrangements of xerogels were studied using SEM, TEM, 1H-NMR, XRD, and CD spectra. SEM measurements observe the formation of nanotube structures with helical structures. TEM measurements reveal that the molecular structures, nature of solvents show significant effect on the morphologies of the gel networks. It was observed that PyPC in dodecanol forms nanotube structures in which the nanotubes were constructed by twisted fibers. Interestingly, TEM observations show that both left and right handed helical constructions were formed although the system is chiral system. However, CD analysis indicates the existence of helical constructions. The results suggest that both left and right handed helical constructions shown in TEM images should be unequal amount.
1. Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules-supermolecules-molecular devices, Nobel Lecture, 1987.
2. Stupp, S. I.; Palmer, L. C. Supramolecular Chemistry and Self Assembly in Organic Materials Design, Chemistry of Materials, 2014, 26, 507–518.
3. Sangeetha, N. M.; Maitra, U. Supramolecular gels: Functions and uses, Chemical Society Reviews, 2005, 34, 821-836.
4. George, M.; Weiss, R. G. Molecular Organogels. Soft Matter Comprised of Low-Molecular-Mass Organic Gelators and Organic Liquids, Accounts of Chemical Research, 2006, 39, 489-497.
5. Hou, X.; Gao, D.; Yan, J.; Ma, Y.; Liu, M.; Fang, Y. Novel Dimeric Cholesteryl Derivatives and Their Smart Thixotropic Gels, Langmuir, 2011, 27, 12156-12163.
6. Xue, M.; Liu, K.; Peng, J.; Zhang, Q.; Fang, Y. Novel Dimeric Cholesteryl-based A(LS)2 Low Molecular Mass Gelators with a Benzene Ring in the Linker, Journal of Colloid and Interface Science, 2008, 327, 94-101.
7. Xue, Min.; Gao, D.; Chen, X.; Liu, K.; Fang, Y. New Dimeric Cholesteryl-based A(LS)2 Gelators with Remarkable Gelling Abilities: Organogel Formation at Room Temperature, Journal of Colloid and Interface Science, 2011, 361, 556-564.
8. Svobodova, H.; Nonappa; Lahtinen, M.; Wimmer, Z.; Kolehmainen, E. A Steroid-based Gelator of A(LS)2 type: tuning gel properties by metal coordination, Soft Matter, 2012, 8, 7840-7847.
9. Yan, Y.; Lin, Y.; Qiao, Y.; Huang, J. Construction and application of tunable one-dimensional soft supramolecular assemblies, Soft Matter, 2011, 7, 6385-6398.
10. Leong, W. L.; Tam, A. Y.; Batabyal, S. K.; Koh, L. W.; Kasapis, S.; Yam, V. W.; Vittal, J. J. Fluorescence enhancement of coordination polymeric gel, Chemical Communications, 2008, 3628-3630.
11. Flory, P. J. Faraday Discuss Chemicals Society, 1974, 57, 7-18.
12. Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels, Chemical Reviews, 1997, 97, 3133-3159.
13. Zinic, M.; Vogtle, F.; Fages, F. Cholesterol-Based Gelators, Top. Curr. Chem., 2005, 256, 39-76.
14. Abdallah, D. J.; Weiss, R. G. Organogels and Low Molecular Mass Organic Gelators, Advanced Materials, 2000, 12, 1237-1247.
15. Smith, D. K. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials, Chemical Society Review, 2009, 38, 684-694.
16. Esch, J. H.; Feringa, B. L. New Functional Materials Based on Self-Assembling Organogels: From Serendipity towards Design, Angew. Chem. Intl. Ed., 2009, 39, 2263-2266.
17. Sakurai, K.; Jeong, Y.; Koumoto, K.; Friggeri, A.; Gronwald, O.; Sakurai, S.; Okamoto, S.; Inoue, K.; Shinkai, S. Supramolecular Structure of a Sugar-Appended Organogelator Explored with Synchroton X-ray Small-Angle Scattering, Langmuir, 2003, 19, 8211-8217.
18. Smith, D. K. Molecular Gels – Nanostructured Soft Materials in Organic Nanostructures, ed. J. W. Steed and J. L. Atwood, Wiley-VCH, Weinheim, 2008.
19. Estroff, E. A.; Hamilton, A. D. Water Gelation by Small Organic Molecules, Chemical Reviews, 2004, 104, 1201-1217.
20. Fenniri, H.; Mathivanan, P.; Vidale, K. L.; Sherman, D. M.; Hallenga, K.; Wood, K. V.; Stowell, J. G. Helical Rosette Nanotubes: Design, Self Assembly, and Characterization, Journal of American Chemical Society, 2001, 123, 3854-3855.
21. Zhang, X.; Wang, C. Supramolecular amphiphiles, Chemical Social Review, 2011, 40, 94-101.
22. Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.; Takarabe, K. Formation of Stable Bilayer Assemblies in Water from Single-Chain Amphiphiles. Relationship between the Amphiphile Structure and the Aggregate Morphology, Journal of American Chemical Society, 1981, 103, 5401-5413.
23. Lin, Y.; Weiss, R. G. A Novel Gelator of Organic Liquids and the Properties of Its Gels, Macromolecules, 1987, 20, 414-417.
24. Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation, Journal of American Chemical Society, 1994, 116, 6664-6676.
25. Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. New Dicholesteryl-Based Gelators: Chirality and Spacer Length Effect, Langmuir, 2008, 24, 2992-3000.
26. Wu, Y.; Wu, S.; Tian, X.; Wang, X.; Wu, W.; Zou, G.; Zhang, Q. Photoinduced reversible gel-sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der Waals interactions, Soft Matter, 2011, 7, 716-721.
27. Yang, X.; Zhang, G.; Zhang, D. Stimuli responsive gels based on low molecular weight gelators, Journal of Materials Chemistry, 2012, 22, 38-50.
28. Debnath, S.; Shome, A.; Dutta, S.; Das, P. K. Dipeptide-Based Low-Molecular-Weight Organogelators and Their Application in Water Purification, Chemistry a European Journal, 2008, 14, 6870-6881.
29. Bhattacharya, S.; Ghosh, Y. K. First Report of Phase Selective Gelation of Oil from Oil/Water Mixtures. Possible Implications Toward Containing Oil Spills, Chemical Communication, 2001, 185-186.
30. Xue, M.; Gao, D.; Liu, K.; Peng, J.; Fang, Y. Cholesteryl derivatives as phase-selective gelators at room temperature, Tetrahedron, 2009, 65, 3369-3377.
31. Duan, P.; Cao, H.; Zhang, L.; Liu, M. Gelation induced supramolecular chirality: chirality transfer, amplification and application, Soft Matter, 2014, 10, 5428-5448.
32. Iwaura, R.; Shimizu, T. Reversible Photochemical Conversion of Helicity in Self-Assembled Nanofibers from a 1,-Thymidylic Acid Appended Bolaamphiphile, Angew. Chem. Intl. Ed., 2006, 45, 4601-4604.
33. Chen, X.; Huang, Z.; Chen, S.; Li, K.; Yu, X.; Pu, L. Enantioselective Gel Collapsing: A New Means of Visual Chiral Sensing, Journal of American Chemical Society, 2010, 132, 7297-7299.
34. Zhu, G.; Dordick, J. S. Solvent effect on Organogel Formation by Low Molecular Weight Molecules, Chemistry of Materials, 2006, 18, 5988-5995.
35. Wang, C.; Zhang, D.; Zhu, D. A Low-Molecular-Mass Gelator with an Electroactive Tetrathiafulvalene Group: Tuning the Gel Formation by Charge-Transfer Interaction and Oxidation, Journal of American Chemical Society, 2005, 127, 16372–16373.
36. Xiao, S.; Zou, Y.; Yu, M.; Yi, T.; Zhou, Y.; Li, F.; Huang, C. A photochromic fluorescent switch in an organogel system with non-destructive readout ability, Chemical Community, 2007, 4758-4760.
37. Lee, C.; Grenier, C.; Meijer, E.; Schenning, A. Preparation and characterization of helical self-assembled nanofibers, Chemical Social Review, 2009, 38, 671-683.
校內:2018-08-26公開