| 研究生: |
鍾政翰 Chung, Cheng-Han |
|---|---|
| 論文名稱: |
以物理混合法合成高比表面積之多重孔洞碳材應用於超級電容及電容脫鹽 Using a Physical Blending Method to Synthesize Multiporous Carbon with High Surface Areas for Applications in Supercapacitor and Capacitive Deionization |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 孔洞碳材 、氧化鋅 、碳酸鈣 、超級電容 、電容脫鹽技術 、綠色化學 |
| 外文關鍵詞: | multiporous carbon, supercapacitor, green chemistry, capacitive deionization, pyrolysis oil |
| 相關次數: | 點閱:233 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於以簡單製程、環境友善、低成本的方式合成多重孔洞碳材,利用其豐富的孔洞性,提升超級電容及電容脫鹽裝置元件之性能。實驗上以簡單的物理混合法將模板(ZnO、CaCO3)與碳源(裂解油)混合均勻,透過900℃高溫碳化即得高比表面積孔洞碳材,實驗中不需使用有機溶劑,模板以稀釋的HCl(aq)移除,產生的鋅離子廢液也能透過酸鹼中和回收再製成模板使用,相較於傳統的氧化矽模板法,不僅不需使用到高毒性的HF(aq)移除模板,也不需要繁瑣的實驗步驟,在量化生產上得以簡化生產流程,同時避免過多的汙染造成環境負擔,達成綠色化學的概念。
以物理混合法合成高比表面積多重孔洞碳材,透過調整ZnO/裂解油比例2~5,其比表面積可達1280~1770 m2 g-1,孔洞豐富性高有助於提升超級電容效益,較大的中孔有助於碳材的通透度及離子傳輸,較小的中孔與微孔用來提高比表面積並且儲存離子。在二極式超級電容方面,在有機電解液1M LiClO4/PC的環境下,可以達到130 F g‒1之高比電容值(掃描速率= 5 mV s‒1),在掃描速率= 500 mV s‒1,仍能維持70%高保留率;另外,可藉由添加三聚氰胺,在碳的結構中擔載含氮官能基,利用快速法拉第反應增加電荷儲存量,進一步提升電容值到約150 F g-1。電容脫鹽方面,透過混合酚醛樹脂再次碳化的方式,提高多重孔洞碳材之體密度(bulk density),便於電極的塗佈,其鹽吸附量可達7.61 mg g-1;另外,可藉由在碳的結構中擔載含氮官能基提高表面電荷,降低同離子排斥效應,增加鹽吸附量,將陽極更換為含氮多重孔洞碳材,其鹽吸附量可達9.01 mg g-1,且在吸附時間10分鐘內即達總吸附量90%,有助於縮短一趟電容脫鹽循環時間,優化電容脫鹽效益。
Supercapacitors are promising energy sources for many different applications due to their high power density, short charge time and long cycle life. However, they have a low energy density due to the poor surface area and porosity of their carbon electrodes. Accordingly, this study proposes a method for synthesizing porous carbon with an increased surface area and optimized pore properties. In the proposed approach, the carbon is produced from biomass using an eco-friendly process based on a ZnO nanoparticle templating technique. Compared with previous silica hard templating approaches, the proposed method is more environmentally friendly since the ZnO templates are removed using hydrochloric acid rather than toxic hydrofluoric acid. Moreover, the carbon source is provided by the pyrolysis oil produced as a by-product in the wood cracking process, and hence reduces the pollution which is otherwise caused if this oil is simply discarded. Applied in a supercapacitor, the porous carbon exhibits a high capacity (up to 130 F/g) and a high retention rate (70%) even under a scan rate of 500 mV/s. Moreover, for capacitive deionization (CDI) application, the synthesized carbon results in a maximum electrosorption capacity of 9.01 mg g‒1 at 1.2 V in 5.0 mM NaCl solution.
1. D. H. Everett, Pure Appl. Chem, 31, 579-638, 1971.
2. I. Moriguch, F. Nakahara, H. Furukawa, H. Yamada, T. Kudo, Electrochem Solid-State Lett, 7, 8, A221–3, 2004.
3. L. Guo, L. Zhang, J. Zhang, J. Zhou, Q. He, S. Zeng, X. Cui and J. Shi, Chem Commun, 40, 6071-6073, 2009.
4. I.A.W. Tan, A.L. Ahmad, and B.H. Hameed, J. Hazard. Mater, 154, 337–346, 2008.
5. C. Liang and S. Dai, J. Amer. Chem. Soc., 128, 5316-5317, 2006.
6. Y. Zhang, W.-S. Zhang, A.-Q. Wang, S. Li-Xian, M.-Q. Fan, H.-L. Chu, J.-C. Sun and T. Zhang, INT J HYDROGEN ENERG, 32, 3976-3980, 2007.
7. J. Ding, K.-Y. Chan, J. Ren and F.-s. Xiao, Electrochimica Acta, 50, 3131-3141, 2005.
8. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angew. Chem. Int. Ed., 45, 4467-4471, 2006.
9. F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee and X. S. Zhao, Chem Mater, 17, 3960-3967, 2005.
10. J. Huang, B. G. Sumpter and V. Meunier, Chemistry, 2008, 14, 6614-6626.
11. C. H. Hou, C. Y. Huang, C. Y. Hu, J. Environ. Sci. Technol, 10, 753–760,2013.
12. R. Ryoo, S. H. Joo, and S. Jun, J. Phys. Chem. B, 103, 7743-7746, 1999.
13. J. Lee, J. Kim, and T. Hyeon, Advanced Materials 18, 2073-2094, 2006.
14. 劉冠彣, Hierarchical Porous Carbons Synthesized with ZnO Templates and Petroleum Pitch via a Solvent-Free Process for Supercapacitor and Capacitive Deionization Applications, 2017.
15. 活性碳材料, 工研院, 2012.
16. B. E. Conway, J. Electrochem. Soc., 138, 1539-1548, 1991.
17. E. Frackowiak, Phys Chem Chem Phys., 9, 1774-1785, 2007.
18. L. L. Zhang, and X. S. Zhao, Chem. Soc. Rev., 38, 2520-2531, 2009.
19. R. Kötz, and M. Carlen, Electrochim. Acta., 45, 2483-2498, 2000.
20. 陳宗億. Syntheisis and Application of Mesoporous Carbon Based High Energy Density Supercapacitor, 2013.
21. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, and F. Beguin, J. Power Sources., 153, 413-418, 2006.
22. G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 13, 345-349, 1967.
23. F. Ide and A. Hasegawa, J. Appl. Polym. Sci., 18, 963-974, 1974.
24. K. Kataoka, A. Harada and Y. Nagasaki, Adv. drug deliv. rev., 47, 113-131, 2001.
25. V. Peykov, A. Quinn and J. Ralston, Colloid. Polym. Sci., 278, 789-793, 2000.
26. A. Bourdon, V. Pasko, N. Y. Liu, S. Célestin, P. Ségur and E. Marode, Plasma Sources Sci. Technol., 16, 656, 2007.
27. R. J. Crawford, I. H. Harding and D. E. Mainwaring, J Colloid Interf Sci, 181, 561-570, 1996.
28. D. E. Yates, S. Levine and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 70, 1807-1818, 1974.
29. K. B. Oldham, J Electroanal Chem, 613, 131-138, 2008.
30. K. Xu, Y. Lam, S. S. Zhang, T. R. Jow and T. B. Curtis, J. Phys. Chem. C, 111, 7411-7421, 2007.
31. R. W. Impey, M. Sprik and M. L. Klein, J. Am. Chem. Soc., 109, 5900-5904, 1987.
32. J. Prue and P. Sherrington, Transactions of the Faraday Society, 57, 1795-1808, 1961.
33. S. Levine, D. Calvert, and G. M. Bell, Can. J. Chem.-Rev. Can. Chim. 40, 518-&, 1962.
34. S. Levine, and C. W. Outhwaite, J. Chem. Soc., Faraday Trans., 74, 1670-1689, 1978.
35. C. W. Outhwaite, and L. B. Bhuiyan, J. Chem. Soc., Faraday Trans., 79, 707-718, 1983.
36. C. W. Outhwaite, L. B. Bhuiyan, and S. Levine, J. Chem. Soc., Faraday Trans., 76, 1980.
37. A. Burke, J Power Sources, 91, 37-50, 2000.
38. J. P. Zheng, P. J. Cygan and T. R. Jow, J Electrochem Soc, 142, 2699-2703, 1995.
39. http://www.un.org/News/Press/docs/2010/ga10967.doc.htm.
40. M. A. Anderson, A. L. Cudero, and J. Palma, Electrochim. Acta, 55, 3845-3856, 2010.
41. S. Obaidani et al. J. Membr. Sci. 323, 85-98, 2008.
42. L. M. Camacho et al. Water, 5, 94-196, 2013.
43. C. Fritzmann, J. Lowenberg, T. Wintgens, and T. Melin, Desalination 216, 1-76, 2007.
44. L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, Water Res. 43, 2317-2348, 2009.
45. K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci. 370, 1-22, 2011.
46. S. K. Adhikary, U. K. Tipnis, W. P. Harkare, and K. P. Govindan, Desalination 71, 301-312, 1989.
47. A. A. Sonin, and R. F. Probstein, Desalination 5, 3, 293-329,1968.
48. S. Porada et al. Energy Environ. Sci. 6, 3700-3712, 2013.
49. D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold, and A. Papastamataki, Oklahoma University Research Institute, 1966.
50. A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne, C. M. Wong, W. S. Gillam, S. Johnson, and R. H. Horowitz, Washington, D.C. : U.S. Dept. of the Interior, 200 056, 1970.
51. A. M. Johnson, A. W. Venolia, R. G. Wilbourne, and J. Newman, p36, 1970.
52. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, J. Electrochem. Soc., 143, 159-169, 1996.
53. C. J. Gabelich, T. D. Tran, and I. H. Suffet, Environ. Sci. Technol., 36, 3010-3019, 2002.
54. C. C. Huang and Y. J. Su, J. Hazard. Mater., 175, 477-483, 2010.
55. C. Tsouris et al. Environ. Sci. Technol. 45, 10243-10249, 2011.
56. C. H. Hamann, A. Hamnett, and V. Wolf, "Electrochemistry," WILEY-VCH, 1998.
57. C. Lin, J. A. Ritter, and B. N. Popov, J. Electrochem. Soc., 146, 3639-3643, 1999.
58. L. Nadjo and J. Savéant, J. Electroanal. Chem. Interfac., 48, 113-145, 1973.
59. K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda and J. Osteryoung, J. Electroanal. Chem. Interfac., 171, 219-230, 1984.
60. C. Amatore and J. Savéant, J. Electroanal. Chem. Interfac., 85, 27-46, 1977.
61. M. Doyle, T. F. Fuller and J. Newman, J Electrochem Soc, 140, 1526-1533, 1993.
62. B. Conway, H. Angerstein‐Kozlowska, M. Sattar and B. Tilak, J Electrochem Soc, 130, 1825-1836, 1983.
63. D. Harrington and B. Conway, J. Electroanal. Chem. Interfac., 221, 1-21, 1987.
64. B. Conway, L. Bai and D. Tessier, J. Electroanal. Chem. Interfac., 161, 39-49, 1984.
65. J. Saxena, K. Butler, V. Jayaram, S. Kundu, N. Arvind, P. Sreeprakash and M. Hachinger, in International test conference, pp. 1098-1104, 2003.
66. F. MANSFELD, Corrosion, 32, 143-146, 1976.
67. A. H. Ajami, K. Banerjee, A. Mehrotra and M. Pedram, in Quality Electronic Design, 2003. Proceedings. Fourth International Symposium on, IEEE, pp. 35-40 , 2003.
68. D. McCumber, J. Appl. Phys., 39, 3113-3118, 1968.
69. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 38, 570-580, 1982.
70. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 38, 478-485, 1982.
71. M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy, Wiley-Interscience, 2011.
72. K. Jüttner, Electrochim. Acta, 35, 1501-1508, 1990.
73. F. Mansfeld, J. Appl. Electrochem., 25, 187-202, 1995.
74. 蔡定平. 奈米檢測技術, 2009.
75. D. Langmuir, P. Hall and J. Drever, Environ. Geochem. Health, Englewood Cliffs: Prentice-Hall, 1997.
76. O. Franke, G. Schulz-Ekloff, J. Rathouský, J. Stárek and A. Zukal, J. Chem. Soc., Chem. Commun., 724-726, 1993.
77. R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, and D. Zhao, J. Amer. Chem. Soc, 35, 128, 11652–11662.2006.
78. A. Kumar, H. M. Jena, Appl. Surf. Sci., 356, 753–761,2015.
79. P. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J. B. Holger, and A. S. Kaskel, Adv. Funct. Mater, 25, 2, 287-297, 2015.
80. B. E. Conway, Electrochemical Supercapacitors, ch13, 350, 1999.
81. https://baike.baidu.com/item/%E9%94%8C%E7%A6%BB%E5%AD%90
82. E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, Appl. Phys. Lett, 77, 2421, 2000.
83. C. X. Guo ab, and C. M. Li, Energy Environ. Sci., 4, 4504-4507, 2011.
84. Z. Zhu1, S. Tang1, J. Yuan1, X. Qin1, Y. Deng, R. Qu, and G. M. Haarberg, Int. J. Electrochem. Sci., 11, 8270 – 8279, 2016
85. L. H. Wang, M. Toyoda, M. Inagaki, New Carbon Mater, 23,2, 111–115, 2008.
86. O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon, 43, 1303–1310, 2005.
87. U. B. Nasini, V. G. Bairi, S. K. Ramasahayama, S. E. Bourdo, T. Viswanathan, and A. U. Shaikh, J. Power Sources, 250, 15, 257-265,2014.
88. P. Liu, H. Wang, T. Yan, J. Zhang, L. Shi and D. Zhang, J. Mater. Chem. A, 4,5303, 2016.
89. S. Jeon, H. Park, J. Yeo, S. Yang, C. H. Cho, M. H. Han, and D. K. Kim, Energy Environ. Sci., 6, 1471, 2013.
90. X. Gao, A. Omosebi, J. Landon, and K. Liu, Energy Environ. Sci., 8, 897, 2015.
91. S. Y. Huang, C. S. Fan, C. H. Hou, J. Hazard. Mater., 278, 8, 15, 2014.
92. H. Jin, X. Wang, Z. Gu, J. Polin, J. Power Sources, 236, 285-292, 2013.
93. M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Energy Environ. Sci., 8, 2296-2319, 2015.