| 研究生: |
鍾昆翰 Chung, Kun-Han |
|---|---|
| 論文名稱: |
微型渦輪發電系統用於無人載具之可行性評估 The Feasibility Assessment of Micro Turbine Generator System Apply to Unmanned Vehicles |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 微型氣渦輪 、渦輪軸發動機 、微型渦輪發電 、無人飛行載具 |
| 外文關鍵詞: | micro turbine generator, turboshaft engine, unmanned vehicles, drone |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無人飛行載具除休閒娛樂外,其在許多領域上皆有大規模應用案例,然對於以電池為主要動力的大多數機種而言,電池的性能成為一重大瓶頸。目前市面上多旋翼無人載具滯空時間約25 min左右,大型植保機則多落於10~15 min上下,如何提升續航力成為該領域長期探討的議題。吾人認為結合石化燃料的混合動力系統有利於無人載具在如起飛重量及滯空時間等特定指標的性能提升,以擴展應用領域及增加使用效益。
本研究為微渦輪發電系統發展計畫載具動力分支的先導技術評估,目標為設計製造一適配於無人載具之微渦輪發電系統。吾人將使用KingTech的K60-TP渦輪軸發動機作為動力核心並選配合適的發電機以開發相關配套技術。現階段以地面機台測試為主,旨在了解發動機運轉特性與發電輸出表現,判斷發電系統是否符合性能需求?
分析實驗數據可知,當永磁無刷馬達做為發電機運用時,其馬達速度常數K_V會隨著發電功率上升而增加,於本研究最高功率輸出時約為標稱值1.4倍。實驗結果顯示於核心渦輪轉速160,000 rpm下,系統可輸出42.4 V、110 A,功率最高達4.6 kW,符合設定案例的起飛懸停功率需求,系統比滯空為153.51 s/kg,熱效率2.6 %,滯空時間從鋰電池10 min增加至發電系統22 min,大幅增加1倍以上。續航力分析方面,以5 kg燃油酬載計算每提升1 %熱效率則可增加約43 %續航時間。至此吾人可宣稱微渦輪發電系統用無人載具能源提供於理論及工程上皆為一可行方案。
In addition to leisure and entertainment, unmanned aerial vehicles have widely applications in many fields. However, for most models that use batteries as their main power, battery performance becomes a major bottleneck. For the consumer drone on the market, the endurance is about 25 minutes, while that of the agricultural spraying drone usually falls within 10-15 minutes. How to improve the endurance has become a long-term topic in this field. It is believed that the hybrid power system is conducive to the performance improvement of unmanned vehicles, so as to expand the application field and increase the utilizations efficiency.
The goal of this research is to design and manufacture a micro-turbine power generation system suitable for unmanned vehicles. K60-TP turboshaft engine is used as main power source, and appropriate generators is selected to develop related supporting technologies. The ground-based testing is mainly used to understand engine operating characteristics and power generation performance, and to determine whether the system meets performance requirements.
According to the experimental results, the system can generate 42.4 V, 110 A at the core turbine speed of 160,000 rpm, power output is up to 4.6 kW. The system's specific endurance is 153.51 s/kg, thermal efficiency is 2.6189 %, and the endurance is increased from 10min for lipo batteries to 22 min for the power generation system, which is more than doubled. In the end, it is concluded that the micro turbine generator system apply to unmanned vehicles power supply is a feasible solution in both theory and engineering.
[1] 王宥琢,“無人機續航力技術的技術發展,以專利觀點分析”,國立清華大學科技管理研究所碩士論文,新竹市,2018。
[2] M. J. Vick, “High Efficiency Recuperated Ceramic Gas Turbine Engines for Small Unmanned Air Vehicle Propulsion,” Department Of Mechanical Engineering, London, 2012.
[3] S. L. Hamilton, “Project Title: Micro Turbine Generator Program,” Proceedings of the 33rd Annual Hawaii International Conference on System Science, pp. 1-4, 2000.
[4] 李政鑫,“微型渦輪發電系統使用生質柴油之性能及排放測試研究”,國立清華大學動力機械工程學系碩士論文,新竹市,2010。
[5] 李秀璇,“台灣地區汽油車輛CO2排放推估方法之研究”,國立成功大學環境工程學系碩士論文,台南市,2007。
[6] “Capstone C30 HEV Microturbine”
https://reurl.cc/xGDKWE
[7] “Microturbines a Potted History and Blog”
https://reurl.cc/7r2bEk
[8] M. Frister, “Directly Driven Dynamo Electric Machine-Gas Turbine Generator Structure,” U.S Patent 4,253,031, 1981.
[9] J. Noe and R. McKeirnan, “Gas Turbine Generator Set,” U.S Patent 5,497,615, 1996.
[10] O. Badran, “Gas-Turbine Performance Improvements,” Applied Energy, Vol.64, Iss.1–4, pp. 263-273, Sep. 1999.
[11] C. Rodger, “25-5 Kwe Microturbine Design Aspects,” in ASME Paper 2000-GT-0626, Munich, Germany, 2000.
[12] P. Pilavachi, “Power Generation with Gas Turbine Systems and Combined Heat and Power,” Applied Thermal Engineering, pp. 1421-1429, 2000.
[13] A. Epstein, “Millimeter-scale, MEMS Gas Turbine Engines,” ASME Turbo Expo, pp. 669-696, Jun 2003.
[14] C. Zwyssig and J. Kolar, “Design of a 100 W, 500,000 rpm Permanentmagnet,” Conference Record of the IEEE, pp. 253-260, 2005.
[15] 高嘉臨,“八十磅級微型渦輪引擎性能分析及測試研究”, 國立成功大學航空太空工程學系碩士論文,2009。
[16] 黃博昌,“微型渦輪發電系統設計、分析與測試研究”,國立清華大學動力機械工程學系碩士論文,2009。
[17] 陳育隆,“微渦輪發電系統應用於混合式行動載具之電力及減噪研究”,國立清華大學動力機械工程學系碩士論文,2010。
[18] 楊耀民,“永磁式發電機磁通量及散熱效率改進之研究”,國立交通大學機械工程學系碩士論文,2010。
[19] 余守龍,“永磁無刷啟動發電機之設計與實現”,國立成功大學系統及船舶機電工程學系碩士論文,2010。
[20] T. A. Rotramel, “Optimization of Hybrid-Electric Propulsion Systems for Small Remotely-Piloted Aircraf,” Systems for Small Remotely-Piloted Aircraf, 2011.
[21] 莊秉勳,“微型渦輪發電系統之開發”,國立清華大學動力機械工程學系碩士論文,2012。
[22] 洪偉稜,“高轉速發電系統之設計與驗證研究”, 國立成功大學航空太空工程學系碩士論文,2012。
[23] Kyuho Sim, Bonjin Koo, Chang Ho Kim, Tae Ho Kim, “Development and Performance Measurement of Micro-Power Pack Using Micro-Gas Turbine Driven Automotive Alternators,” Applied Energy, pp. 309-319, 2013.
[24] 李建興、謝旻甫,“永磁發電機設計與驗證”,中國機械工程學會第三十一屆全國學術研討會論文集,台中市,2014。
[25] 黃仕丞,“微型渦輪摻氫發電系統之設計與驗證”, 國立成功大學航空太空工程學系碩士論文,台南市,2015。
[26] K. E. MCKINNEY, “Evaluation Of Hybrid-Electric Power System Integration Challenges for Multirotor UAS,” Oklahoma State University, 2016.
[27] K. Rouser, N. Lucido, M. Durkee, A. Bellcock and T. Zimbelman, “Development of Turboelectric Propulsion and Power for Small Unmanned Aircraft,” Oklahoma State University, 2018.
[28] K. J. Moody, “Design, Analysis, And Integration Of A Turboelectric Propulsion And Power System For Unmanned Aircraft,” Oklahoma State University, 2018.
[29] 田家榮,“微型渦輪發電系統性能分析與實驗驗證之研究”,國立成功大學航空太空工程學系碩士論文,2020。
[30] P. P. Walsh and P. Fletcher, SAE APR 755A Engine Station Numbering, Blackwell Science Ltd a Blackwell Publishing Company, 2004.
[31] 旺材電機與電控,“永磁交流伺服電動機轉矩常數和反電勢常數的規範化應用分析”
https://reurl.cc/EnKbYA
[32] 成功大學馬達科技中心,“永久磁性直流馬達原理”
https://reurl.cc/GmkGQd
[33] “電機世界之直流無刷電機”
https://reurl.cc/MZ9Ovk.
[34] 連家祥,陳品清,葛世偉,“外轉子永磁風力發電機設計之研究”,中華民國第三十一屆電力工程研討會,台南,2021。
[35] “Rectifier”
https://reurl.cc/kZ58k9
[36] “傳感器技術”
https://reurl.cc/vqnKoA
[37] H. H. Hurt, Jr, “Aerodynamics For Naval Avators”, Los Angeles, University of Southern California, August 1959.
[38] “正齒輪之效率”,麗台國際有限公司,台中市,2020。
[39] K60TP
https://reurl.cc/Ak1bpZ
[40] MCOC-34-12-15
https://reurl.cc/L0QzAx
[41] SGM-45C-10-15
https://reurl.cc/bX6Nx6
[42] T-22
https://reurl.cc/XeaYGD
[43] 熱電偶
https://reurl.cc/eE5Vam
[44] 電子顯示器
https://reurl.cc/GmkGQd
[45] 霍爾轉速器
https://reurl.cc/a9lMzX
[46] 雷射轉速計
https://reurl.cc/Q7VQk5
[47] 功率分析儀
https://reurl.cc/mqk1eW
[48] TES-3142U
https://reurl.cc/2r4l39
[49] JP120全金屬導風扇
https://reurl.cc/Ak1bDZ
[50] FLAME電子變速器
https://reurl.cc/1YQkz9
[51] King Kong Series 220A-KII-12S
https://reurl.cc/KA6ODm
[52] J. B. Heywood, “Internal Combustion Engine Fundamentals,” New York, McGraw-Hill, 1988.
[53] 台灣中油股份有限公司,“煤油安全資料表”
https://reurl.cc/W348Vk
校內:2026-07-22公開