| 研究生: |
林柏勲 Lin, Bo-Xun |
|---|---|
| 論文名稱: |
以EBSD分析HTST與HAST可靠度測試後銀-鈀/鋁及銀-金-鈀/鋁接合處之介金屬層 EBSD Characterization of Intermetallic Layers in Ag-Pd/Al and Ag-Au-Pd/Al Joints under HTST and HAST Reliability Tests |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 內連線 、銀 、鋁 、介金屬化合物 、HAST 、HTST |
| 外文關鍵詞: | interconnection, silver, intermetallic compounds, HTST, HAST |
| 相關次數: | 點閱:139 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
打線封裝製程中,金線因質脆、導電性差之介金屬化合物成長過快且價格逐年升高之下,使價格相對低廉且導電、導熱性較優的銅線受到重視。但銅易氧化且機械性質過高,導致良率不佳,限制了銅線的發展與使用。導電性最佳的銀線曾受到矚目,但由於電解離子遷移、濕氣腐蝕及擴散差異所造成的孔洞等諸多阻礙,成為銀線不被看好的主因。
本論文擬對新興的打線材料銀-金-鈀合金線(Ag-8Au-3Pd)與銀-鈀合金線(Ag-3Pd)進行材料介金屬成長之研究。在以不同接合能量參數接合,並經過高加速溫度濕度未飽和蒸氣應力測試(HAST)與高溫儲存測試(HTST)下,銀/鋁與銀-金/鋁之介金屬化合物隨著時間變化與成長。儀器方面以FE-SEM觀察介金屬厚度的演化,並利用能譜分析儀(EDS)與背向散射電子分析儀(EBSD)鑑定介金屬化合物的元素成分與晶體結構。本論文測得HTST可靠度測試2000小時之下銀-金-鈀合金線與銀-鈀合金線之平均厚度為2.52與1.63微米。透過經驗指數關係式求得銀-金-鈀合金線動力學參數n值於HAST與HTST下分別為0.093以及0.123,屬擴散控制反應;銀-鈀合金線則為0.604及0.642,屬反應-擴散混合機制。銀-金-鈀合金線與銀-鈀合金線分別於HTST可靠度測試500小時與1000小時出現裂縫,顯示銀-金-鈀合金線的可靠度較差。
最後,比較銀合金線與鍍鈀銅、銅-鈀合金線之可靠度測試結果,得到銀合金線之介金屬化合物厚度厚於鍍鈀銅與銅-鈀合金線,得到銀-鈀合金線可靠度測試較優秀之結論。
Gold wire bonding is one of the oldest and most mature process due to its high yields and low processing costs. However, Kirkendall effect in Au/Al interface has been an important issue in gold wire bonding process. With slower IMC layer growth and cheaper cost, copper wires have recently been reckoned as a candidate. However, the oxidation and strong mechanical property shortened the applications. In addition to copper wires, silver wires have the best electric and thermal conductivity, but they have problem in their humidity corrosion, electrolyte migration phenomena and Kirkendall effect.
In this study, we focused on Ag/Al and Ag-Au/Al intermetallic compounds (IMCs) analysis using Ag-3Pd and Ag-8Au-3Pd wires. SEM, EDS and EBSD techniques were applied to characterize the IMC layers at the bonded interfaces, the chemical composition and structures analysis of IMCs after HTST and HAST reliability aging tests.
The IMC average thicknesses was measured 1.6 μm in Ag-3Pd wires and 2.52 μm in Ag-8Au-3Pd wires after HTST 2000 hours. We can clearly determine the tendency of IMC growth in Ag-3Pd and Ag-8Au-3Pd wires respectively. The kinetics parameter n, no matter in HTST or HAST, were calculated to be 0.093 and 0.123, which were diffusion controlled reactions in Ag-8Au-3Pd wires; 0.604 and 0.642, which were diffusion-reaction mixed mechanism in Ag-3Pd wires. We found cracks formed in Ag-8Au-3Pd wires after HTST 500 hours earlier than those in Ag-3Pd wires after HTST 1000 hours.
Based on what we observed in IMC thicknesses evolution and cracks formation, by comparing the differences between silver alloy and copper wires, thicker IMCs were found in silver alloy wires, which will provide better bondabilities. At last, we found Ag-3Pd wires to be the best wire materials of all.
[1] Z. W. Zhong, "Wire bonding using copper wire," Microelectronics International, Vol. 26, pp. 10-16, 2009.
[2] S. Kaimori, T. Nonaka, and A. Mizoguchi, "The development of Cu bonding wire with oxidation-resistant metal coating", IEEE Trans. Adv. Pakag., Vol. 29, pp. 228-231, 2006.
[3] L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. M. Huang and Y. P. Wang, “Silver Alloy Wire Bonding”, Proc 62th Electronics Component Technology Conf, pp.1163-1168, 2012.
[4] H. Xu, C. Liu, V. V. Silberschmidt and Z. Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminum metallization pads”, Scripta Mater., Vol. 61, pp. 165-168, 2009.
[5] T. Uno, “Bond reliability under humid environment for coated copper wire and bare copper wire”, Microelectron. Reliab., vol. 51, pp. 148-156, 2011.
[6] T. Uno, “Enhancing bondability with coated copper bonding wire”, Microelectron. Reliab., Vol. 51, No. 1, pp. 88-96, 2011.
[7] S. Kaimori, T. Nonaka and A. Mizoguchi, “Development of ‘hybrid bonding wire’”, SEI Tech. Rev., pp.14-18, 2006.
[8] T. Uno, K. Kimura and T. Yamada, “Surface-enhanced copper bonding wire for LSI and its bond reliability under humid environments”, Proc. 17th Euro. Microelectron. Packag. Conf., pp. 1486-1495, 2009.
[9] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, “Reliability study of low cost alternative Ag bonding wire with various bond pad materials”, Proc. 11th Electron. Packag. Technol. Conf., pp. 851–857, 2009.
[10] B. Valdez, M. Schorr, R. Zlatev, M. Carrillo, M. Stoytcheva, L. Alvarez, A. Eliezer and N. Rosas, ”Corrosion Control in Industry”, Environment and Industrial Corrosion, Practical and Theoretical Aspects, DOI: 10.5772/51987, pp. 27, 2012.
[11] E. Sancaktar, P. Rajput and A. Khanolkar, “Correlation of Silver Migration to the Pull Out Strength of Silver Wire Embedded in an Adhesive Matrix”, IEEE Trans. Compon. Packag. Manufac.Technol., Vol. 28, pp. 771-780, 2005.
[12] K. Vu, “Silver Migration – The Mechanism and Effects on Thick-Film Conductors”, Material Science Engineering 234–Spring, pp. 1-21, 2003.
[13] T. H. Chuang, C. C. Chang, C. H. Chuang, J. D. Lee and H. H. Tsai, “Formation and Growth of Intermetallics in an Annealing-Twinned Ag-8Au-3Pd Wire Bonding Package During Reliability Tests”, IEEE Transaction on component, packaging and manufacturing technology, Vol. 3, pp. 3-9, 2013.
[14] C. J. Hang, I. Lum, J. Lee, M. Mayer, C. Q. Wang, and Y. Zhou, "Bonding wire characterization using automatic deformability measurement", Microelectronic Engineering, Vol. 85, pp. 1795-1803, 2008.
[15] C. D. Breach and F. W. Wulff, "A brief review of selected aspects of the materials science of ball bonding", Microelectronics Reliability, Vol. 50, pp. 1-20, 2010.
[16] G. G. Harman, Wire Bonding in Microelectronics: Materials, processes, reliability and yield 2ed., McGraw Hill, New York, pp.115-122, 1997.
[17] O. M. Amirmajdi, R. Ashyer-Soltani, M. P. Clode, and S. H. Mannan, "Cross-Section Preparation for Solder Joints and MEMS Device Using Argon Ion Beam Milling", IEEE Transactions on Components, Packaging, and Manufacturing, Vol. 32, pp. 265-271, 2009.
[18] C. J. Hang, C. Q. Wang, Y. H. Tian, M. Mayer, and Y. Zhou, "Microstructural study of copper free air balls in thermosonic wire bonding", Microelectronic Engineering, Vol. 85, pp. 1815-1819, 2008.
[19] C. Hang, C. Wang, M. Shi, X. Wu, and H. Wang, "Study of Copper Free Air Ball in Thermosonic copper Ball Bonding", IEEE Electronics Packaging Technology Conference 6th, pp. 414-418, 2005.
[20] L. Levine, "The Ultrasonic Wedge Bonding Mechanism Two Theories Converge," in Proceedings of SPIE the international society for optics and photonics, pp. 242-246, 1995.
[21] I. Qin, A. Shah, C. Huynh, and M. Meyer, "Effect of Process Parameters on Pad Damage during Au and Cu Ball Bonding Processes," in IEEE Electronics Packaging Technology Conference 11th, pp. 573-578, 2009.
[22] L. I, J. JP and Z. Y, "Bonding mechanism in ultrasonic gold ball bonds on copper substrate", Metallurgical and Materials Transactions A, vol. 36, pp. 1279-1286, 2005.
[23] N. Srikanth, S. Murali, Y. M. Wong, and C. J. Vath, "Critical study of thermosonic copper ball bonding", Thin Solid Films, Vol. 462-463, pp. 339-345, 2004.
[24] Y. L. Seng, "Characterization of intermetallic growth for gold bonding and copper bonding on aluminum metallization in power transistors", IEEE Electronics Packaging Technology Conference 9th, pp. 731-736, 2007.
[25] C. Y. Fu and J. C. Kuo, "EBSD Caracterization of Intermetallic Layers in Cu/Al Joint under HAST and HTST Reliability Tests", 2013.
[26] T. H. Chuang, H. C. Wanga, C. H. Tsaia, C. C. Changa, C. H. Chuanga, J. D. Leeb and H. H. Tsaib, “Thermal stability of grain structure and material properties in an annealing-twinned Ag-8Au-3Pd alloy wire”, Scripta Materialia 67, pp.605-608, 2012.
[27] S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang and J. T. Moon, “Thermosonic ball bonding behavior of Ag-Au-Pd alloy wire”, IEEE 15th EPTC, pp. 254-259, 2013.
[28] J. S. Cho, K. A. Yoo , S. J. Hong, J. T. Moon, Y. J. Lee, W. Han, H. Park, S. W. Ha, S. B. Son, S. H. Kang and K. H. Oh, “Pd Effects on the Reliability in the Low Cost Ag Bonding Wire”, Proc 60th Electronics Component Technology Conf, pp.1541-1546, 2010.
[29] T. C. Wei and A. R. Daud, "Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface", Electronic Packaging, Vol. 125, pp. 617-620, 2003.
[30] P. Ratchev, S. Stoukatch, and B. Swinnen, "Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads", Microelectronics Reliability, Vol. 46, pp. 1315-1325, 2006.
[31] S. Cui, W. Zhang, L. Zhang, H. Xu and Y. Du, ”Assessment of Atomic Mobilities in fcc Al-Ag-Zn Alloys”, Journal of Phase Equilibria & Diffusion, Vol. 32, pp.512-524, 2011.
[32] R. Guo, T. Hang, D. Mao, M. Li, K. Qian, Z. Lv and H. Chiu, ”Behavior of intermetallics formation and evolution in Ag–8Au–3Pd alloy wire bonds”, Journal of Alloys and Compounds, Vol. 588, pp. 622–627, 2014.
[33] H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen and V. L. Acoff, ”Intermetallic phase transformation in Au–Al wire bonds”, Intermetallics, Vol. 19, pp. 1808–1816, 2011.
[34] H. H. Tsai, T. H. Chuang, J. D. Lee, C. H. Tsai, H. C. Wang, H. J. Lin and C. C. Chang, "High performance Ag-Pd alloy wires for high frequency IC packages", IEEE In Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 8th International, pp. 162-165, 2013.
[35] Lyman, Taylor and ASM Handbook Committee, Metallography, structures and phase diagrams, Ohio, 1973.
[36] C. Y. Lin and K. C. Lu, "The Interfacial Reactions in Pd-alloyed/Au-Pd-alloyed Ag wire bonds under reliability tests", 2014.
[37] A. Kumar and Z. Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple”, Journal of Electronic Materials, Vol. 40, pp. 213-223, 2011.
[38] JC-14.1 Committee, "Test Method A110-B Highly-Accelerated Temperature and Humidity Stress Test (HAST)", Electronic industries alliance, JEDEC Solid State Technology Association, 1999.
[39] V. Randle and O. Engler, Introduction to Texture Analysis:Macrotexture, Microtexture,and Orientation Mapping, 2 ed. New York: CRC Press, pp.71, 2010.
[40] J. L. Murray, H. Okamoto and T. B. Massalski, “The Al-Au (Aluminum-Gold) System”, Bulletin of Alloy Phase Diagrams, Vol. 8, Gaithersburg, MD, pp. 20-30, 1987.
[41] Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, and B. H. Toh, "Study of factors affecting the hardness of ball bonds in copper wire bonding", Microelectronic Engineering, Vol. 84, Singapore, pp. 368-374, 2007.
[42] P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for intermetallic Desk Edition, Vol. 1, Ohio: ASM International, p.181, 1998.