| 研究生: |
謝采娟 Hsieh, Tsai-Chuan |
|---|---|
| 論文名稱: |
高溫電紡同排聚丙烯奈米纖維及其微結構鑑定 Preparation of isotactic polypropylene nanofibers via high temperature electrospinning and microstructure characterization |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 電紡絲 、聚丙烯 、結晶 、晶型轉換 |
| 外文關鍵詞: | electrospinning, polypropylene, mesophase, melt-quenched |
| 相關次數: | 點閱:127 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可成功由高溫溶液電紡絲法製備出直徑在0.15到1.8m間的同排聚丙烯(iPP)纖維,實驗使用夾套式熱交換器使溶液維持在高溫,並以雷射加熱器加熱針頭至所需溫度。
由纖維SEM圖可知,當溶液iPP濃度或操作電壓改變時,纖維的形態及直徑分佈也會有明顯的變化,推測是與電紡時溶劑擴散與揮發所需時間有關,將電紡纖維以WAXD做檢測,可知纖維內的晶型為與mesophase的混合晶型。
經由WAXD、SAXS、FTIR與DSC分析,逐步升溫回火可改變纖維內晶型,同時為了做比較,實驗亦製備了melt-quenched膜並以同樣手法升溫回火,了解其與纖維膜的差異,研究發現升溫回火過程中,amorphous相並不參與分子鏈的重組或晶型的轉換,而由DSC的結果得知,與melt-quenched膜相比纖維膜在分子鏈重組或是晶型轉換,均需較高的溫度,由FTIR的結果可知,晶型轉換時,分子鏈helical的結構皆無改變,SAXS結果顯示了電紡纖維之Bragg spacing皆比melt-quenched膜還要小。
Isotactic polypropylene (iPP) fibers with diameters between 0.15-1.8 m were successfully produced from high-temperature electrospinning solution using a jacket-type heat exchanger to maintain the solution temperature and a laser heating device to heat locally the needle spinneret to a desired temperature.
As demonstrated by SEM, there existed a different morphology of iPP fibers by electrospinning of solutions with different concentrations and different voltage. It was related to the solvent evaporation and diffusion during jet whipping. In the as-spun fibers, mixed crystals of the monoclinic a-form and disordered mesophase were detected by WAXD.
Though wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimeter (DSC) analyses, the annealing effect on the structure evolution was investigated. For comparison, step-wise annealing of the melt-quenched film was also carried out. During step-wise annealing, amorphous phase remained unchanged, and the mesophase transformed into form crystal. DSC results showed that both the reorganization temperature and meso transformation temperature were elevated to higher temperatures compared with those obtained from the melt-quenched film. During the meso transformation, the helical conformation of iPP chains remained intact, as evidenced by FTIR results. At a given annealing temperature, the Bragg spacing derived from SAXS results was smaller in the as-spun fibers than that in the melt-quenched film.
[1] B. Lotz, J. C. Wittmann, A. Lovinger, “Structure and morphology of poly(propylenes): a molecular analysis.” Polymer, 37, 4979 (1996).
[2] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in isotactic polypropylene.” Progress in Polymer Science, 16, 361 (1991).
[3] T. Konishi, K. Nishida, T. Kanaya, K. Kaji, “Effect of isotacticity on formation of mesomorphic phase of isotactic polypropylene.” Macromolecules, 38, 8749 (2005).
[4] X. Zhu, D. Yan, Y. Fang, “In situ FTIR spectroscopy study on the melting process of isotactic poly(propylene).” The Journal of Physical Chemistry, 105, 12461 (2001).
[5] Z. G. Wang, B. S. Hsiao, S. Srinivas, G. M. Brown, A. H. Tsou, S. Z. D. Cheng, R. S. Stein, “Phase transformation in quenched mesomorphic isotactic polypropylene.” Polymer, 42, 7561 (2001).
[6] T. Konishi, K. Nishida, T. Kanaya, “Crystallization of isotactic polypropylene from prequenched mesomorphic phase.” Macromolecules, 39, 8035 (2006).
[7] R. Androsch, “In situ atomic force microscopy of the mesomorphic- monoclinic phase transition in isotactic polypropylene.” Macromolecules, 41, 533 (2008).
[8] T. Nakaoki, Y. Inaji, “Molecular structure of isotactic polypropylene formed from homogeneous solution. gelation and crystallization.” Polymer Journal, 34, 539 (2002).
[9] K. H. Lee, O. Ohsawa, K. Watanaba, I. S. Kim, S. R. Givens, B. Chase, J. F. Rabolt, “Electrospinning of syndiotactic polypropylene from a polymer solution at ambient temperatures. ” Macromolecules, 42, 5215 (2009).
[10] S. R. Givens, K. H. Gardner, J. F. Rabolt, D. B. Chase, “High-temperature electrospinning of polyethylene microfibers from solution.” Macromolecules, 40, 608 (2007).
[11] D. M. Rein, L. Shavit-Hadar, R. L. Khalfin, Y. Cohen, K. Shuster, E. Zussman, “Electrospinning of ultrahigh-molecular-weight polyethylene nanofibers.” Journal of Polymer Science, Part B: Polymer Physics, 45, 766 (2007).
[12] C. Wang, H. S. Chien, C. H. Hsu, Y. C. Wang, C. T. Wang, H. A. Lu, “Elctropsinning of polyacrylonitrile solution at elevated temperature.” Macromolecules, 40, 7973 (2007).
[13] M. G. McKee, M. G. Wilkes, R. H. Colby, T. E. Long, “Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters.” Macromolecules, 37, 1760 (2004).
[14] S. L. Shenoy, W. D. Bates, H. L. Frisch, G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit.” Polymer, 46, 3372 (2005).
[15] A. Eckstein, J. Suhm, C. Friedrich, R. D. Maier, J. Sassmannshausen, M. Bochmann, R. Mülhaupt, “Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts.” Macromolecules, 31, 1335 (1998).
[16] S. Koombhongse, W. Liu, D. H. Reneker, “Flat polymer ribbons and other shapes by electrospinning.” Journal of Polymer Science, Part B: Polymer Physics, 39, 2598 (2001).
[17] Y . Geng, G . Wang, Y . Cong, L . Bai, L . Li, C. Yang, “Shear-induced nucleation and growth of long helices in supercooled isotactic polypropylene. ” Macromolecules, 42, 4751 (2009).