| 研究生: |
蔡郁青 Tsai, Yu-Ching |
|---|---|
| 論文名稱: |
微/奈米鐵粉水熱產氫之研究 Hydrothermal generation of hydrogen gas by micron- and nano-iron powders |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 微/奈米鐵 、鈀 、水熱法 、產氫 |
| 外文關鍵詞: | micron-/nano-iron, palladium, hydrothermal, hydrogen generation |
| 相關次數: | 點閱:138 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關微/奈米鐵粉水熱產氫之研究,探討反應溫度、鐵粉含量、鐵粉粒徑以及觸媒添加量對產氫速率之影響。首先利用市售鐵粉與水反應,發現所產出之氣體冷凝後經氣相層析儀證實為高純度氫氣,且其產氫速率隨反應溫度與鐵粉含量增加而上升,隨鐵粉粒徑增大而下降。又奈米鐵粉產氫速率遠大於微米鐵粉,微米鐵粉在反應溫度低於100℃幾乎觀察不到氫氣的生成,而奈米鐵粉在反應溫度90℃依舊有大量氫氣產生,但奈米鐵粉反應長時間易有燒結現象發生,使反應不完全。其次使用置換反應在微米鐵粉上沉積鈀觸媒,三種不同粒徑之微米鐵粉隨著鈀觸媒沉積量的增加,產氫速率隨之增加,沉積鈀觸媒後45μm鐵粉其產氫效果優於3μm鐵粉,推測係因45μm鐵粉為扁平狀,且其表面有許多深淺不一的裂痕,有助於鐵粉表面積的增加與鈀觸媒的沉積,進而提升與水反應產氫的效能所致。沉積鈀觸媒後的45μm鐵粉,其產氫轉化率可從12.6%提升至98.7%,且三種不同粒徑之微米級鐵粉沉積鈀觸媒後其轉化率均可達80%以上,顯示鈀具有非常良好的催化效果,適用於沉積在各種粒徑及形態之鐵粉上。本研究所發展之鐵粉水熱產氫製程具有成本低廉、產出之氫氣純度極高、製程簡單易於大量生產的優點,極具實用化潛力。
This thesis concerns the hydrothermal generation of hydrogen gas by micron- and nano-iron powders. Investigate the hydrogen generation rate affected by reaction temperature, iron amount, iron particle size and the amount of catalyst added. First, this research used commercially iron reacted with water, finding that the gas of experiment produced after condensation was confirmed to high purity hydrogen by GC, and the hydrogen generation rate increased with increasing reaction temperature and iron amount, decreasing with increasing the particle size of iron. And the hydrogen generation rate of nano-iron much faster than micron-iron.There could not observe hydrogen generation by micron-iron when reaction temperature lower than 100℃, but there were still produced numerous of hydrogen by nano-iron when reaction temperature at 90℃.The nano-iron tended to be sintered if reaction for long time. It will cause the reaction incomplete. Secondly, using replacement reaction deposited the palladium catalyst on the micron-iron. Three different sizes of micron-iron of the hydrogen generation rate increased with increasing the amount of palladium deposited. The hydrogen generation rate of 45μm iron was better than 3μm iron after deposited the palladium on the iron surface, presumably due to there had many varying depth of cracks on 45μm iron surface and the shape of 45μm iron similar to flat, this structure contributed to increase the surface area of iron and deposit the palladium catalyst, then promoted the efficacy of hydrogen generation from iron with water. The conversion of 45μm iron was from 12.6% promoted to 98.7% after deposited the palladium on the iron surface. The conversion of three different sizes of micron-iron could reach above 80% after deposited the palladium on the iron surface. Show the palladium had very good catalytic activity, could deposit on iron for any size and shape.
This study developed the process of hydrothermal generation of hydrogen gas by iron powders had the advantage include: low cost, the hydrogen of generation had high purity, process simple and easy to mass production, exist the potential of practical.
1.南區奈米科技K-12教育發展中心, 奈米科技-基礎、應用與實作, 高立, 臺北, (2005).
2.R.P. Feynman, A lecture in engineering and science, In California Institute of Technology (1959).
3.江宜蓁, 以有機金屬法合成具磁性奈米粒子與光學特性之金屬複合奈米材料, 國立成功大學化學工程研究所博士論文,( 2008).
4.A.L. Porter, J. Youtie, How interdisciplinary is nanotechnology?, J. Nanopart. Res., 11, 1023-1041. (2009)
5.Website: http://sunnywin.begonia.tw/chi/nanometer_1/.
6.C.N.R. Rao, A.K. Cheetham, Science and technology of nanomaterials: current status and future prospects, J. Mater. Chem., 11, 2887-2894. (2001)
7.蘇品書, 超微粒子材料技術, 復漢, 臺南, (1989).
8.莊萬發, 超微粒子理論應用, 復漢, 臺南, (1995).
9.Website: http://www.materialsnet.com.tw/DocView.aspx?id=8247.
10.工研院工業材料研究所, 材料奈米科技專刊, 經濟部技術處, 臺北, (2001).
11.徐國財、張立德, 奈米複合材料, 五南, 臺北, (2004).
12.尹邦耀, 奈米時代, 五南, 臺北, (2002).
13.毛宗強, 氫能-21世紀的綠色能源, 新文京, 臺北, (2008).
14.M. Rydén, M. Arjmand, Continuous hydrogen production via the steam–iron reaction by chemical looping in a circulating fluidized-bed reactor, Int. J. Hydrogen Energy, 37, 4843-4854. (2012)
15.A.K. Singh, M. Yadav, K. Aranishi, Q. Xu, Temperature-induced selectivity enhancement in hydrogen generation from Rh–Ni nanoparticle-catalyzed decomposition of hydrous hydrazine, Int. J. Hydrogen Energy, 37, 18915-18919. (2012)
16.Y. Zhao, Z. Ning, J. Tian, H. Wang, X. Liang, S. Nie, Y. Yu, X. Li, Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co–Mo–Pd–B amorphous catalyst with efficient catalytic properties, J. Power Sources, 207, 120-126. (2012)
17.S. Duman, S. Özkar, Hydrogen generation from the dehydrogenation of ammonia–borane in the presence of ruthenium(III) acetylacetonate forming a homogeneous catalyst, Int. J. Hydrogen Energy, 38, 180-187. (2013)
18.市川勝, 圖解氫能源, 世茂, 新北市, (2009).
19.K. Brooks, M. Devarakonda, S. Rassat, J. Holladay, Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications, J.Fuel Cell Sci. Technol., 8, 061021. (2011)
20.M.D. Paster, R.K. Ahluwalia, G. Berry, A. Elgowainy, S. Lasher, K. McKenney, M. Gardiner, Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions, Int. J. Hydrogen Energy, 36, 14534-14551. (2011)
21.A. Zuttel, Hydrogen storage methods, Naturwissenschaften, 91, 157-172. (2004)
22.S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, Storage and supply of hydrogen by means of the redox of the iron oxides modified with Mo and Rh species, J. Catal., 228, 66-74. (2004)
23.M. Thaler, V. Hacker, Storage and separation of hydrogen with the metal steam process, Int. J. Hydrogen Energy, 37, 2800-2806. (2012)
24.I. Vishnevetsky, A. Berman, M. Epstein, Features of solar thermochemical redox cycles for hydrogen production from water as a function of reactants’ main characteristics, Int. J. Hydrogen Energy, 36, 2817-2830. (2011)
25.C.D. Bohn, J.P. Cleeton, C.R. Müller, S.Y. Chuang, S.A. Scott, J.S. Dennis, Stabilizing Iron Oxide Used in Cycles of Reduction and Oxidation for Hydrogen Production, Energy Fuels, 24, 4025-4033. (2010)
26.A. Singh, F. Raqom, J. Klausner, J. Petrasch, Production of hydrogen via an Iron/Iron oxide looping cycle: Thermodynamic modeling and experimental validation, Int. J. Hydrogen Energy, 37, 7442-7450. (2012)
27.M. Thaler, V. Hacker, M. Anilkumar, J. Albering, J. Besenhard, H. Schrottner, M. Schmied, Investigations of cycle behaviour of the contact mass in the RESC process for hydrogen production, Int. J. Hydrogen Energy, 31, 2025-2031. (2006)
28.P.A. Lessing, Materials for hydrogen generation via water electrolysis, J. Mater. Sci., 42, 3477-3487. (2007)
29.D.L. Stojić, M.P. Marčeta, S.P. Sovilj, Š.S. Miljanić, Hydrogen generation from water electrolysis—possibilities of energy saving, J. Power Sources, 118, 315-319. (2003)
30.P.K. Dubey, A.S.K. Sinha, S. Talapatra, N. Koratkar, P.M. Ajayan, O.N. Srivastava, Hydrogen generation by water electrolysis using carbon nanotube anode, Int. J. Hydrogen Energy, 35, 3945-3950. (2010)
31.S. Usui, S. Kikawa, N. Kobayashi, J. Yamamoto, Y. Ban, K. Matsumoto, Comparison of Forward and Reverse Reactions in Hydrogen Generation between GaN, InGaN, Nanocrystalline TiO2 and Pt Electrodes during Water Electrolysis, Jpn. J. Appl. Phys., 47, 8793-8795. (2008)
32.N. Shimizu, S. Hotta, T. Sekiya, O. Oda, A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply, J. Appl. Electrochem., 36, 419-423. (2005)
33.電子工業部第十設計研究院, 氫氣生產與純化(水電解製氫), 黑龍江科學技術出版社, 哈爾濱, (1983).
34.F. Lapicque, J. Lédé, J. Villermaux, Production of hydrogen by direct thermal decomposition of water, Int. J. Hydrogen Energy, 8, 675-679. (1983)
35.S. Baykara, Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency, Int. J. Hydrogen Energy, 29, 1451-1458. (2004)
36.M.A. Rosen, Advances in hydrogen production by thermochemical water decomposition: A review, Energy, 35, 1068-1076. (2010)
37.L. Xiao, S.Y. Wu, Y.R. Li, Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions, Renewable Energy, 41, 1-12. (2012)
38.Q.L. Meng, C.I. Lee, H. Kaneko, Y. Tamaura, Solar thermochemical process for hydrogen production via two-step water splitting cycle based on Ce1−xPrxO2−δ redox reaction, Thermochim. Acta, 532, 134-138. (2012)
39.A. Ozbilen, I. Dincer, M.A. Rosen, Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu–Cl cycles, J. Cleaner Prod., 33, 202-216. (2012)
40.R. Liberatore, A. Ceroli, M. Lanchi, A. Spadoni, P. Tarquini, Experimental vapour–liquid equilibrium data of HI–H2O–I2 mixtures for hydrogen production by Sulphur–Iodine thermochemical cycle, Int. J. Hydrogen Energy, 33, 4283-4290. (2008)
41.R. Liberatore, M. Lanchi, G. Caputo, C. Felici, A. Giaconia, S. Sau, P. Tarquini, Hydrogen production by flue gas through sulfur–iodine thermochemical process: Economic and energy evaluation, Int. J. Hydrogen Energy, 37, 8939-8953. (2012)
42.P. Zhang, S.Z. Chen, L.J. Wang, T.Y. Yao, J.M. Xu, Study on a lab-scale hydrogen production by closed cycle thermo-chemical iodine–sulfur process, Int. J. Hydrogen Energy, 35, 10166-10172. (2010)
43.S. Abanades, P. Charvin, F. Lemont, G. Flamant, Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen, Int. J. Hydrogen Energy, 33, 6021-6030. (2008)
44.V. Rosenband, A. Gany, Application of activated aluminum powder for generation of hydrogen from water, Int. J. Hydrogen Energy, 35, 10898-10904. (2010)
45.M. Watanabe, Chemical reactions in cracks of aluminum crystals: Generation of hydrogen from water, J. Phys. Chem. Solids, 71, 1251-1258. (2010)
46.K. Mahmoodi, B. Alinejad, Enhancement of hydrogen generation rate in reaction of aluminum with water, Int. J. Hydrogen Energy, 35, 5227-5232. (2010)
47.D.P. Gregory, J.B. Pangborn, Hydrogen Energy, Annu. Rev. Energy, 1, 279-310. (1976)
48.V. Hacker, R. Fankhauser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr, K. Kordesch, Hydrogen production by steam–iron process, J. Power Sources, 86, 531-535. (2000)
49.K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, Chemical storage of hydrogen by modified iron oxides, J. Power Sources, 122, 111-121. (2003)
50.K.H. Seong, J.S. Lee, Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides, Mater. Sci. Forum, 534, 137-140. (2007)
51.K.F. Chen, S. Li, W.X. Zhang, Renewable hydrogen generation by bimetallic zero valent iron nanoparticles, Chem. Eng. J., 170, 562-567. (2011)
52.Y. Wang, F. Jin, X. Zeng, G. Yao, Z. Jing, A novel method for producing hydrogen from water with Fe enhanced by HS− under mild hydrothermal conditions, Int. J. Hydrogen Energy, 38, 760-768. (2012)
53.C.Y. Park, T.H. Lee, S.E. Dorris, U. Balachandran, Hydrogen production from fossil and renewable sources using an oxygen transport membrane, Int. J. Hydrogen Energy, 35, 4103-4110. (2010)
54.J. Dufour, D.P. Serrano, J.L. Gálvez, J. Moreno, A. González, Hydrogen Production from Fossil Fuels: Life Cycle Assessment of Technologies with Low Greenhouse Gas Emissions, Energy Fuels, 25, 2194-2202. (2011)
55.C.C. Cormos, Hydrogen production from fossil fuels with carbon capture and storage based on chemical looping systems, Int. J. Hydrogen Energy, 36, 5960-5971. (2011)
56.J. Dufour, D.P. Serrano, J.L. Gálvez, A. González, E. Soria, J.L.G. Fierro, Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources, Int. J. Hydrogen Energy, 37, 1173-1183. (2012)
57.A. Smoliński, Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification, Energy Convers. Manage., 52, 37-45. (2011)
58.C.R. Müller, C.D. Bohn, Q. Song, S.A. Scott, J.S. Dennis, The production of separate streams of pure hydrogen and carbon dioxide from coal via an iron-oxide redox cycle, Chem. Eng. J., 166, 1052-1060. (2011)
59.K. Stańczyk, K. Kapusta, M. Wiatowski, J. Świądrowski, A. Smoliński, J. Rogut, A. Kotyrba, Experimental simulation of hard coal underground gasification for hydrogen production, Fuel, 91, 40-50. (2012)
60.L. Zeng, F. He, F. Li, L.S. Fan, Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation, Energy Fuels, 26, 3680-3690. (2012)
61.K. Kumabe, H. Moritomi, W. Ito, S. Kambara, T. Minowa, K. Sakanishi, Material balances of major and trace elements in hydrogen production process from coal with CO2 recovery, Fuel, 107, 40-46. (2013)
62.S.K. Saxena, V. Droz, S. Kumar, A modified method for production of hydrogen from methane, Int. J. Energy Research, 36, 1133-1138. (2012)
63.N. Demir, Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles, Int. J. Hydrogen Energy, 38, 853-860. ( 2013)
64.K. Oshima, T. Shinagawa, M. Haraguchi, Y. Sekine, Low temperature hydrogen production by catalytic steam reforming of methane in an electric field, Int. J. Hydrogen Energy, 38, 3003-3011. (2013)
65.W.H. Chen, Y.C. Cheng, C.I. Hung, Entropy generation from hydrogen production of catalytic partial oxidation of methane with excess enthalpy recovery, Int. J. Hydrogen Energy, 37, 14167-14177. (2012)
66.A. Motamed Dashliborun, S. Fatemi, A. Taheri Najafabadi, Hydrogen production through partial oxidation of methane in a new reactor configuration, Int. J. Hydrogen Energy, 38, 1901-1909. (2013)
67.A.M. Amin, E. Croiset, Z. Malaibari, W. Epling, Hydrogen production by methane cracking using Ni-supported catalysts in a fluidized bed, Int. J. Hydrogen Energy, 37, 10690-10701. (2012)
68.A. Abánades, C. Rubbia, D. Salmieri, Technological challenges for industrial development of hydrogen production based on methane cracking, Energy, 46, 359-363. (2012)
69.L. Wei, Y.S. Tan, Y.Z. Han, J.T. Zhao, J. Wu, D. Zhang, Hydrogen production by methane cracking over different coal chars, Fuel, 90, 3473-3479. (2011)
70.J. Kim, Y. Sohn, M. Kang, New fan blade-like core-shell Sb2TixSy photocatalytic nanorod for hydrogen production from methanol/water photolysis, Int. J. Hydrogen Energy, 38, 2136-2143. (2013)
71.S. Tuomi, A.S. Aarnio, P. Kanninen, T. Kallio, Hydrogen production by methanol–water solution electrolysis with an alkaline membrane cell, J. Power Sources, 229, 32-35. (2013)
72.P.J. Lindner, R.S. Besser, Hydrogen production by methanol reforming in a non-thermal atmospheric pressure microplasma reactor, Int. J. Hydrogen Energy, 37, 13338-13349. (2012)
73.R. Chein, Y.C. Chen, J.N. Chung, Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production, Appl. Energy, 102, 1022-1034. (2013)
74.X. Du, Y. Shen, L. Yang, Y. Shi, Y. Yang, Experiments on hydrogen production from methanol steam reforming in the microchannel reactor, Int. J. Hydrogen Energy, 37, 12271-12280. (2012)
75.Y.M. Yun, K.W. Jung, D-H. Kim, Y.K. Oh, H.S. Shin, Microalgal biomass as a feedstock for bio-hydrogen production, Int. J. Hydrogen Energy, 37, 15533-15539. (2012)
76.P. Kuchonthara, B. Puttasawat, P. Piumsomboon, L. Mekasut, T. Vitidsant, Catalytic steam reforming of biomass-derived tar for hydrogen production with K2CO3/NiO/γ-Al2O3 catalyst, Korean J. Chem. Eng., 29, 1525-1530. (2012)
77.A. Bhattacharya, A. Datta, Modeling of hydrogen production process from biomass using oxygen blown gasification, Int. J. Hydrogen Energy, 37, 18782-18790. (2012)
78.李建政、任南琪, 生物製氫技術的研究與發展, 能源工程, 2, 6. (2001)
79.魏琪、孫啟玲、張興宇, 關於生物制氫, 微生物學雜誌, 6, 17. (2002)
80.D.C. Zhong, K. Aranishi, A.K. Singh, U.B. Demirci, Q. Xu, The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage, Chem. Commun., 48, 11945-11947. (2012)
81.S.K. Singh, Y. Iizuka, Q. Xu, Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage, Int. J. Hydrogen Energy, 36, 11794-11801. (2011)
82.S.K. Singh, Q. Xu, Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine, Chem. Commun. , 46, 6545-6547. (2010)
83.C.H. Liu, B.H. Chen, C.L. Hsueh, J.R. Ku, M.S. Jeng, F. Tsau, Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts, Int. J. Hydrogen Energy, 34, 2153-2163. (2009)
84.X. Shen, M. Dai, M. Gao, B. Zhao, W. Ding, Solvent effects in the synthesis of CoB catalysts on hydrogen generation from hydrolysis of sodium borohydride, Chin. J. Catal., 34, 979-985. (2013)
85.F. Qiu, L. Li, G. Liu, Y. Wang, Y. Wang, C. An, Y. Xu, C. Xu, Y. Wang, L. Jiao, H. Yuan, In situ synthesized Fe–Co/C nano-alloys as catalysts for the hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 38, 3241-3249. (2013)
86.M. Rakap, S. Özkar, Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane, Int. J. Hydrogen Energy, 35, 1305-1312. (2010)
87.W. Hui, S. Takenaka, K. Otsuka, Hydrogen storage properties of modified fumed-Fe-dust generated from a revolving furnace at a steel industry, Int. J. Hydrogen Energy, 31, 1732-1746. (2006)
88.胡子龍, 儲氫材料, 化學工業出版社, 北京, (2002).
89.R. Fernandes, N. Patel, A. Paris, L. Calliari, A. Miotello, Improved H2 production rate by hydrolysis of Ammonia Borane using quaternary alloy catalysts, Int. J. Hydrogen Energy, 38, 3313-3322. (2013)
90.胡興中, 觸媒原理與應用, 高立, 台北, (1991).
91.吳榮宗, 工業觸媒概論, 黎明, 新竹, (1989).
92.G. Milazzo, S. Caroli, V.K. Sharma, Tables of Standard Electrode Potentials, (1978).
93.G.B. Marin, F. Kapteijn, J.A. Moulijn, Catalytic Reaction Engineering, Catalysis:an Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis, Elsevier, 251-306. (1993)
94.S. Mukhopadhyay, G. Rothenberg, H. Wiener, Y. Sasson, Solid–solid palladium-catalysed water reduction with zinc: mechanisms of hydrogen generation and direct hydrogen transfer reactions, New J. Chem., 24, 305-308. (2000)
95.M. Pudukudy, Z. Yaakob, B. Narayanan, R. Ramakrishnan, S. Viswanathan, Hydrogen production from sea water using waste aluminium and calcium oxide, Int. J. Hydrogen Energy, 37, 7451-7456. (2012)