| 研究生: |
洪曉琴 Hong, Hsiao-chin |
|---|---|
| 論文名稱: |
Galectin-1會促進口腔腫瘤的形成與肌纖維母細胞的轉形分化 Galectin-1 promotes oral tumorigenesis and transdifferentiation of myofibroblasts |
| 指導教授: |
陳玉玲
Chen, Yuh-Ling 洪澤民 Hong, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 肌纖維母細胞 |
| 外文關鍵詞: | myofibroblasts |
| 相關次數: | 點閱:45 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤相關的纖維母細胞已經知道會調控多種固體瘤的產生與進展。之前的研究結果已經證明,Galectin-1高量表現在早期口腔癌的腫瘤相關纖維母細胞,其表現量與早期口腔癌的預後有正相關(p<0.05)。Galectin-1是一種碳水化合物結合的蛋白,由二個已知的次單元所組成,各自含有碳水化合辨識區。Galectin-1已被證實的生物功能包含:細胞凋亡、細胞轉形、細胞黏附、細胞移動的調控,甚至腫瘤轉移過程的影響。然而是否Galectin-1與口腔癌形成的過程,以及腫瘤相關的纖維母細胞的轉形分化有關,仍然未知。在實驗中我們利用Galectin-1基因剔除小鼠來分析是否缺少Galectin-1可能會減少4-Nitroquinoline-1-oxide誘發的口腔癌。在我們的結果中發現,wild type的老鼠不論是癌症前期病變或口腔癌,其發生率皆較高於Galectin-1基因剔除小鼠。另一方面,我們分離出健康的口腔牙齦纖維母細胞Human gingival fibroblasts(HGFs)與口腔腫瘤相關的纖維母細胞Cancer associated fibroblasts(CAFs),並且證明在CAFs內Galectin-1的表現會高於HGFs。利用類病毒short hairpin RNA (shRNA)載體去減少CAFs的Galectin-1的表現,會使肌纖維母細胞(myofibroblasts)的指標蛋白α-smooth muscle actin(SMA)的表現量也會減少。我們也發現到減少肌纖維母細胞的Galectin-1基因時,其狀態培養液(Condition media)誘導口腔癌細胞移行與侵襲的能力也會減少。在機轉的研究上發現,減少CAFs內Galectin-1表現的狀態培養液會減少蛋白質金屬酶2(MMP2),以及多種重要的細胞激素如單核球趨化蛋白-1(MCP-1)的表現,以MCP-1抗體中和肌纖維母細胞狀態培養液的MCP-1,則可有效抑制狀態培養液誘導的癌細胞移行。綜合以上結果顯示,Galectin-1與肌纖維母細胞的分化有關,並且在Galectin-1高度表現的CAFs會增加MMP2與細胞激素的產生,進而誘導口腔腫瘤細胞的移行與侵襲。這樣的發現顯示了 Galectin-1對於口腔鱗狀上皮細胞癌的形成有促進的作用。期望未來可以利用Galectin-1當作新的腫瘤預防或是治療策略的標的。
Carcinoma-associated fibroblasts (CAFs) have been showed to regulate the initiation and progression of many types of solid tumors. Our previous results have been shown that the expression of Galectin-1 (Gal-1) is significantly up-regulated in the CAFs during early oral carcinogenesis (P < 0.05) and positively correlated with cancer prognosis. Gal-1 is a carbohydrate-binding protein composed of two identical subunits, each one containing a carbohydrate recognition domain. Gal-1 has been implicated in certain biological processes including regulation of apoptosis, cell transformation, cell adhesion, cell migration and thereby affecting the process of tumor metastasis. However, whether Gal-1 involved in oral tumorigenesis and in myofibroblasts trans-differentiation is still unknown. In this study, by using Gal-1 knockout (Gal-1-KO) mice, we analyzed whether loss of Gal-1 might decrease the incidence of carcinogen 4-Nitroquinoline-1-oxide (4-NQO) induced oral cancers. We found that the incidence of leukoplakia and oral malignancy in wild type was higher than Gal-1-KO mice. On the other hand, we have isolated healthy oral gingival fibroblasts (HGFs) and oral cancer-associated fibroblasts and demonstrated the expression of Gal-1 was higher in CAFs than in HGFs. Down-regulation of Gal-1 expression in CAFs using a lentivirus RNA interference could reduce α-smooth muscle actin, a marker of myofibroblasts. Conditioned media (CM) from CAFs increased oral cancer cells migration and invasion. Silencing of Gal-1 in fibroblasts/ myofibroblasts efficiently inhibited CM-induced cancer cells migration and invasion. Mechanism studies revealed that knockdown of Gal-1 in CAFs decreased the levels of matrix metalloproteinase-2 (MMP2) and several important chemokines such as MCP-1 in their conditioned media. Pretreatment of the MCP-1 blocking antibody to neutralize the secreted MCP-1 in myofibroblasts conditioned medium notably diminished conditioned medium-induced cancer cells migration. Taken together, our results indicatethat Gal-1 involved in myofibroblasts differentiation, and Gal-1 overexpression in CAFs increased the production of MMP2 and chemokines and promoted cancer cells migration and invasion. The significance of this finding is that Gal-1 might play a harmful role in enhancing OSCC tumorigenesis, and in the future new preventive or therapeutic strategies could take this factor into consideration.
1. Fred Brewer C. Binding and cross-linking properties of galectins. Biochimica et Biophysica Acta (BBA) - General Subjects 2002; 1572: 255-62.
2. Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clinical and Experimental Medicine 2006; 6: 145-9.
3. Chambers A. Influence of diet on metastasis and tumor dormancy. Clinical and Experimental Metastasis 2009; 26: 61-6.
4. Fokas E, Engenhart-Cabillic R, Daniilidis K, Rose F, An HX. Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev 2007; 26: 705-15.
5. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161-74.
6. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239-52.
7. Angeli F KG, Chen MC, Kumar S, Delinassios JG. Role of Stromal Fibroblasts in Cancer: Promoting or Impeding? . Tumor Biol 2009; 30: 109-20
8. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392-401.
9. Ueno H OS, Okusaka T, Ikeda M. Prognostic Factors in Patients with Metastatic Pancreatic Adenocarcinoma Receiving Systemic Chemotherapy. Oncology 2000; 59: 296-301.
10. Diaconu M, Kothe U, Schlzen F, et al. Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation. Cell 2005; 121: 991-1004.
11. Olivier De Wever MM. Role of tissue stroma in cancer cell invasion. The Journal of Pathology 2003; 200: 429-47.
12. Akira Orimo PBG, Dennis C. Sgroi,Fernando Arenzana-Seisdedos,Thierry Delaunay,Rizwan Naeem,Vincent J. Carey,Andrea L. Richardson and Robert A. Weinberg. Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell 2005; 121: 335-48.
13. Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer 2005; 5: 29-41.
14. van den Brûle F, Califice S, Castronovo V. Expression of galectins in cancer: A critical review. Glycoconjugate Journal 2002; 19: 537-42.
15. Elola MT, Chiesa ME, Alberti AF, Mordoh J, Fink NE. Galectin-1 receptors in different cell types. Journal of Biomedical Science 2005; 12: 13-29.
16. Chiang W F LSY, Chen Y L, Jin Y T. Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncology 2008; 44: 325-34.
17. Raju B, Haug SR, Ibrahim SO, Heyeraas KJ. Sympathectomy decreases size and invasiveness of tongue cancer in rats. Neuroscience 2007; 149: 715-25.
18. Deepak Kanojia MMV. 4-Nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncology 2006; 42: 655-67.
19. Yi Lu, Zhong Cai, Deborah L. Galson, et al. Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. The Prostate 2006; 66: 1311-8.
20. Ferreira FO RF, Batista AC, Leles CR, de Cássia Gonçalves Alencar R, Silva TA: . Association of CCL2 with Lymph Node Metastasis and Macrophage Infiltration in Oral Cavity and Lip Squamous Cell Carcinoma. Tumor Biol 2008; 29: 114-21.
21. Wei-Fan C, Shyun-Yeu L, Lai-Ya F, et al. Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncology 2008; 44: 325-34.
22. Rabinovich GA. Galectin-1 as a potential cancer target. Br J Cancer 2005; 92: 1188-92.
23. De Wever O, Mareel M. Role of myofibroblasts at the invasion front. Biol Chem 2002; 383: 55-67.
24. Rik Derynck RJAAB. TGF- signaling in tumor suppression and cancer progression Nature genetics October 2001; 29: p117 - 29.
25. Keynes R, Krumlauf R. Hox Genes and Regionalization of the Nervous System. Annual Review of Neuroscience 1994; 17: 109-32.
26. Goldberg MT, Han Y-P, Yan C, Shaw MC, Garner WL. TNF-[alpha] Suppresses [alpha]-Smooth Muscle Actin Expression in Human Dermal Fibroblasts: An Implication for Abnormal Wound Healing. J Invest Dermatol 2007; 127: 2645-55.
27. Gallucci RM, Lee EG, Tomasek JJ. IL-6 Modulates Alpha-Smooth Muscle Actin Expression in Dermal Fibroblasts from IL-6-Deficient Mice. J Invest Dermatol 2006; 126: 561-8.
28. Masamune A, Satoh M, Hirabayashi J, Kasai K, Satoh K, Shimosegawa T. Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2006; 290: G729-36.
29. Ueno T, Toi M, Saji H, et al. Significance of Macrophage Chemoattractant Protein-1 in Macrophage Recruitment, Angiogenesis, and Survival in Human Breast Cancer. Clin Cancer Res 2000; 6: 3282-9.
30. Toi M, Harris AL, Bicknell R. Interleukin-4 is a potent mitogen for capillary endothelium. Biochemical and Biophysical Research Communications 1991; 174: 1287-93.
31. Yi Lu ZC, Guozhi Xiao, Yulin Liu, Evan T. Keller, Zhi Yao, Jian Zhang,. CCR2 expression correlates with prostate cancer progression. Journal of Cellular Biochemistry 2007; 101: 676-85.
32. Kenneth L. van Golen CY, Linda Sequeira, Cara W. Dubyk, Tracy Reisenberger, Arul M. Chinnaiyan, Kenneth J. Pienta, Robert D. Loberg,. CCL2 induces prostate cancer transendothelial cell migration via activation of the small GTPase Rac. Journal of Cellular Biochemistry 2008; 104: 1587-97.
33. Werle M, Schmal U, Hanna K, Kreuzer J. MCP-1 induces activation of MAP-kinases ERK, JNK and p38 MAPK in human endothelial cells. Cardiovasc Res 2002; 56: 284-92.
34. Dayan MVIAABD. Stromal Myofibroblasts Accompany Modifications in the Epithelial Phenotype of Tongue Dysplastic and Malignant Lesions. Cancer Microenvironment 2009.
35. Greenwood E. The worm that turns. Nat Rev Cancer 2001; 1: 93-.
36. Sawyers C. Targeted cancer therapy. Nature 2004; 432: 294-7.