簡易檢索 / 詳目顯示

研究生: 林宥任
Lin, You-Zen
論文名稱: 太陽能通風設備的熱交換鰭片參數化研究
The Parametric Study on Heat Exchanger Fins of Solar Ventilation Device
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 139
中文關鍵詞: 熱管通風太陽能
外文關鍵詞: Heatpipe, Solar Energy, Ventilation
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究延續以熱導管為基礎的太陽能通風器研究為方向,探討散熱鰭片高度及散熱鰭片數對通風性能的影響,研究的方法是利用電熱器加熱模擬太陽熱能,並利用熱管將熱傳達至散熱片造成空氣自然對流,進而產生通風的效果。
    本研究的實驗模型為一具0.6m2 集熱板供給固定的600W熱量,熱管數為8根8mm直徑虹吸式熱管。而鰭片厚度固定為0.3 mm,選用三種不同片高度,分別為20cm、10cm、5cm,及四種不同片數15片、30片、45片、60片之交叉實驗。本研究分別量測熱管、鰭片上及出風口等處的溫度及出口流速,據以做為通風效果比較的依據。研究結果顯示排出的熱量與鰭片數成正比,也與鰭片高度成正比;而45片鰭片與鰭片高度為10cm時則有最佳的通風效果。

    The present study is to extend the work of Jin-Han Liu on heat pipe based solar ventilation device. The main purpose of the study is to discuss the effects of height and number of heat exchanger fins on the ventilation. The approach of study is similar to that used in Liu’s research, which employed simulated solar radiation with heating device. Heat pipes were used to transport the heat from heat absorber to heat exchanger fins and create natural convection ventilation effect.
    The test bed has a 0.6m2 heat absorber with preset 600W heating and 8 syphon type heat pipes of 8mm in diameter laid on the absorber to transport the heat. The fins has 3mm thickness, with 3 different heights (5cm, 10cm, and 20cm), and different numbers (15, 30, 45, and 60).
    Temperature measurements were conducted on heat pipes, fins, and at the exit of the vented duct with flow velocity measured. The results showed that the vented heat is proportional to the number of fins, and is also proportional to the height of fins. It was found that the best ventilation result in the study lies at 45 fins and 10cm fin height.

    目錄 中文摘要-------------------------------------------------Ⅰ 英文摘要-------------------------------------------------Ⅱ 致謝-------------------------------------------------------Ⅲ 目錄-------------------------------------------------------Ⅳ 附圖目錄------------------------------------------------Ⅵ 符號說明---------------------------------------------ⅩⅥ 第一章 緒論----------------------------------------------1 1-1 研究動機---------------------------------------------1 1-2 研究目的---------------------------------------------3 1-3 文獻回顧---------------------------------------------4 1-4 內容概要---------------------------------------------7 第二章 太陽能通風器基本架構與應用原理-----8 2-1 基本工作原理---------------------------------------9 2-2 熱管的原理-----------------------------------------10 2-2-1 熱虹吸式熱管----------------------------------10 2-2-2 熱虹吸式熱管性能極限---------------------10 2-3 平板的自然對流----------------------------------12 2-3-1 垂直平板的自然對流------------------------12 2-3-2 垂直平行渠道的自然對流------------------13 第三章 實驗設備與量測-----------------------------19 3-1 實驗方法--------------------------------------------19 3-2 實驗模型--------------------------------------------20 3-3 實驗設備--------------------------------------------24 第四章 結果與討論------------------------------------26 4-1 鰭片高度與鰭片數對通風性能的影響------26 4-1-1 鰭片高度20cm-----------------------------------26 4-1-2 鰭片高度10cm-----------------------------------30 4-1-3 鰭片高度5cm-------------------------------------33 4-2 熱對流與體積流量的變化----------------------36 第五章 結論與建議------------------------------------37 5-1 綜合討論--------------------------------------------37 5-2 實驗誤差---------------------------------------------41 5-3 未來工作及建議-----------------------------------42 參考文獻--------------------------------------------------43

    參考文獻

    1. Aung, W., “Fully Developed Laminar Free Convection between Vertical Plates Heated Asymmetrically,” International Journal of Heat and Mass Transfer, Vol. 15, pp. 1577-1580, 1972.

    2. Aung, W., Fletcher, L. S., and Sernas, V., “Developing Laminar Free Convection between Vertical Flat Plates with Asymmetric Heating,” International Journal of Heat and Mass Transfer, Vol. 15, pp. 2293-2308, 1972.

    3. Akyurt, M., “Development of Heat Pipes for Solar Water Heaters,” Solar Energy, Vol. 32, pp. 625-631, 1984.

    4. Azevedo, L. F. A., and Sparrow, E. M., “Natural Convection in Open-End Inclined Channels,” J. Heat Transfer, Vol. 107, pp. 893, 1985.

    5. Adrian Bejan, “Convective Heat Transfer,” J. Wiley & Son, Inc., New York, 1984.

    6. Bar-Cohen, A., “Fin Thickness for an Optimized Natural Convection Array of Rectangular Fins,” ASME Journal of Heat Transfer, Vol. 101, pp. 564-566, 1979.

    7. Bar-Cohen, A., and Roshenow, W. M., “Thermally Optimum Spacing of Vertical Natural Convection Cooled Parallel Plates,” ASME Journal of Heat Transfer, Vol. 106, pp. 116-123, 1984.

    8. Bienert, W. B., and Wolf, D. A., “Heat Pipes in Flat Plate Solar Collectors,” ASME Paper 76-WA/SOL-12, 1976.

    9. Burmeister, Louis C., “Convective Heat Transfer,” 2nd edition, J. Wiley & Son, Inc., New York, 1993.

    10. Chen, L. Q., Li, Z. L., Ma, X. Q., Yang, Z. L., Leung, C. W., and Leung, T. P., “An Experimental Investigation of Natural Convection Heat Transfer from an Array of Vertical Rectangular Fins,” Proceedings of 11th IHTC, Heat Transfer, Vol. 3, August, pp. 23-28, 1998.

    11. Cotter, T. P., “Theory of Heat Pipes,” Report LA-3246-MS Los Alamo Scientific Laboratory of the University of California, pp. 1-37, 1965.

    12. Charles, D. J., and Lester, F. S., “Natural Convection Heat Transfer from Horizontal Surface for Free Convection Heat Transfer,” ASME Journal of Heat Transfer, Vol. 92, pp. 6-10, 1967.

    13. Cotter, T. P., “Principles and Prospects for Micro Heat Pipe,” Proc. 5th Int. Heat Pipe Conf., Tsukuba Japan, pp. 328-338. 1985.

    14. Elenbass, W., “Heat Dissipation of Parallel Plates by Free Convection,” Physica, Vol. IX, No. 1, pp. 1-28, January, 1942.

    15. Floryan, J. M. and Novak, M., “Free Convection Heat Transfer in Multiple Vertical Channels,” Int. J. Heat and Fluid Flow, Vol. 16, No. 4, August, 1995.

    16. Faghri, A., Chen, M. M., and Morgan, M., “Heat Transfer Characteristics in Two-Phase Closed Conventional and Concentric Annular Thermosyphons,” Transactions of the ASME Journal of Heat Transfer, Vol. 111, pp. 611-618, August 1989.

    17. Grover, G. M., Cotter, T. P., and Erickson, G. F., “Structures of Very High Thermal Conductance,” Journal of Applied Physics, American Institute of Physics, Vol. 35, No. 6, pp. 1990-1991, New York, 1964.

    18. Harahap, F., and McManus, H. N., “Natural Convection Heat Transfer from Horizontal Rectangular Fin Arrays,” Journal of Heat Transfer, Vol. 89, pp. 32-38, 1967.

    19. Incropera, F. P., “Convection Heat Transfer in Elector Equipment Cooling,” ASME Journal of Heat Transfer, Vol. 110, pp. 1097-1111, 1988.

    20. Incropera, F. P., and Dewitt, D. P., “Fundamentals of Heat and Mass Transfer, ” 5th edition, J. Wiley, New York, 1996.

    21. Jyotirmay, M., Sanjay, M., and Anupma, “Summer-Performance of Inclined Roof Solar Chimney for Natural Ventilation,” Energy and Buildings, Vol. 38, pp. 1156-1163, 2006.

    22. Kim, S. H., Anand, N. K., and Fletcher, L. S., “Free Convection Between Series of Vertical Parallel Plates With Embedded Line Heat Sources,” ASME Journal of Heat Transfer, Vol. 113, pp. 108-115, 1991.

    23. Kim, S. H., Anand, N. K., and Fletcher, L. S., “The Effect of Plate Spacing on Free Convection Between Heated Parallel Plates,” ASME Journal of Heat Transfer, Vol. 114, pp. 515-518, 1992.

    24. Krishnan, A.S., Premachandran, B., Balaji, C., and Venkateshan, S.P., “Combined Experimental and Numerical Approaches to Multi-Mode Heat Transfer between Vertical Parallel Plates,” Experiment Thermal and Fluid Science, Vol. 29, pp. 75-86, 2004.

    25. Khan, Naghman, Su, Yuehong, and Riffat Saffa B., “A Review on Wind Driven Ventilation Techniques,” Energy and Building, Vol. 40, pp. 1586-1604, 2008.

    26. Levy, E. K., “Optimum Plate Spacing for Laminar Natural Convection Heat Transfer From Parallel Vertically Isothermal Flat Plates,” ASME Journal of Heat Transfer, Vol. 93, pp. 463-465, 1971.

    27. Negishi, K., and Sawada, T., “Heat Transfer Performance of an Inclined Two-Phase Closed Thermosyphon,” Int. J. Heat Mass Transfer. Vol. 26, No. 8, pp. 1207-1213, 1983.

    28. Olsson, Carl-Olof, “Prediction of Nusselt Number and Flow Rate of Buoyancy Driven Flow between Vertical Parallel Plates,” ASME Journal of Heat Transfer, Vol. 126, pp. 97-104, 2004.

    29. Preeda, C., Jongjit, H., Belkacem, Z., Joseph, K., Sombat, T., and Maung, M. W., “Investigation on Thermal Performance of Glazed Solar Chimney Walls,” Solar Energy, Vol. 80, pp. 228-297, 2006.

    30. Payakaruk, T., Terdtoon, P., and Ritthidech, S., “Correlation to Predict Heat Transfer Characteristics of an Inclined Closed Two-Phase Thermosyphon at Normal Operating Conditions,” Applied Thermal Engineering, Vol. 20, pp. 781-790, 2000.

    31. Rohsenow, Warren, M., Hartnett, James, P., and Ganic, Ejup, N. “Handbook of Heat Transfer Fundamentals,” 2nd edition, McGraw Hill Book Company, New York, 1985.

    32. Ramanathan, S., and Kumar, R., “Correlation for Natural Convection Between Heated Vertical Plates,” ASME Journal of Heat Transfer, Vol. 113, pp. 97-107, 1991.

    33. Starner, K. E., and McManus, H. N., “An Experimental Investigation of Free Convection Heat Transfer from Rectangular Fin Arrays,” ASME Journal of Heat Transfer, Vol. 85, pp. 273-278, 1963.

    34. Said, S. A. M., Habib, M. A., Badr, H. M., and Anwar, S., “Turbulent Natural Convection between Inclined Isothermal Plates,” Computers & Fluids, Vol. 34, pp. 1025-1039, 2005.

    35. Sakonidou, E. P., Karapantsios, T. D., Balouktsis, A. I., and Chassapis, D., “Modeling of the Optimum Tilt of a Solar Chimney for Maximum Air Flow,” Solar Energy, Vol. 82, pp. 80-94, 2007.

    36. Welling, J. R., and Wooldridge, C. B., “Free Convection Heat Transfer Coefficients from Rectangular Vertical Fins,” ASME Journal of Heat Transfer, Vol. 87, pp. 439-444, 1965.

    37. Writz, R. A., and Stutzman, R. J., “Experiments on Free Convection Between Vertical Plates with Symmetric Heating,” ASME Journal of Heat Transfer, Vol. 104, pp. 501-507, 1982.

    38. Watson, J. C., Anand, N. K., and Fletcher, L. S., “Mixed Convective Heat Transfer Between a Plates with Planar Heat Sources,” Proceedings of the ASME Heat Transfer Division, HTD Vol. 317-1, 1995 .

    39. Yuncu, H., and Anbar, G., “An Experimental Investigation on Performance of Rectangular Fins on a Horizontal Base in Free Convection Heat Transfer,” Int. J. Heat Mass Transfer, Vol. 33, pp. 507-514, 1998.

    40. 依日光,“熱管技術理論實務,”復漢出版社有限公司, 台南市,1999.

    41. 呂金翰,“利用太陽熱能達到通風效果的研究,”國立成功大學航太空工程研究所碩士論文,2007年7月

    42. 蘇品書,“電子機器冷卻散熱,”復漢出版社有限公司, 台南市,1999.

    43. 徐景福,“電子機器冷卻的熱設計及模擬,”建宏出版社有限公司, 台北市,1989

    下載圖示 校內:2010-02-10公開
    校外:2011-02-10公開
    QR CODE