簡易檢索 / 詳目顯示

研究生: 楊士緯
Yang, Shih-Wei
論文名稱: 利用週期性介質排列結構於N型氮化鎵層改善發光二極體發光效率之研究
Improved Light Output Efficiency of InGaN-based Light Emitting Diodes with Periodic Dielectric Structures in N-type GaN
指導教授: 賴韋志
Lai, Wei-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 發光二極體磊晶側向成長氮化鎵週期性結構
外文關鍵詞: LED, ELOG, GaN, air void, air gap
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究週期性介質結構於N型氮化鎵層發光二極體光電特性的影響。實驗中將週期性介質置於氮化鎵層上,其後配合磊晶側向成長(Epitaxial Lateral Overgrowth;ELOG),使其週期性介質包覆於氮化鎵層中,此外並降低缺陷密度,再者利用介質結構與氮化鎵的折射率差,增加光在內部散射的機會,提升元件的出光效率。
      在發光二極體光電特性方面,首先比較不同二氧化矽柱(SiO2 pillar)結合空隙(Air gap)的結構,在電流20mA注入下,其順向導通電壓比傳統結構的LED增加0.04~0.07V,其光輸出功率約為4.23~4.66mW,增加約39.14%~53.29%。然而不同空氣洞(Air void)發光二極體,在電流20mA注入下,順向導通電壓比傳統結構的LED增加0.03~0.07V,光輸出功率約為3.36~4.16mW,增加約10.53%~36.84%。在本實驗中,SiO2 pillar高5000Å and air gap高5000Å,在電流20mA注入下,其光輸出功率的增加量將大於50%。

    In this thesis, we discussed optoelectronic characteristics of InGaN-based light emitting diodes with embedded periodic dielectric array structures in n-type GaN. The GaN layer was overgrown on the periodic dielectric array structures. The epitaxial lateral overgrowth mode on periodic dielectric array structures could effectively reduced the dislocations. Meanwhile, the refractive index difference between dielectric array structure and GaN could enhance guided-light scattering efficiency.
    In the optoelectronic characteristics of light emitting diodes, first we compared the difference of SiO2 pillars and air gaps structure. At 20 mA current injections, the output powers were 3.04, 4.23, 4.66, and 4.44 mW for conventional LED, LEDs with embedded 2000 and 5000 Å-height of SiO2 pillars and air gaps, 5000 and 5000 Å-height of SiO2 pillars and air gaps, 7000 and 4000 Å-height of SiO2 pillars and air gaps, respectively. However, the difference of air voids structure, at 20 mA current injections, output powers were 3.04, 3.36, 4.16, and 3.83 mW for conventional LED, LEDs with embedded 3000Å-height and 1μm-wide of air pillars and air gaps, 6000Å-height and 2μm-wide of air pillars and air gaps, 8000Å-height and 1μm-wide of air pillars and air gaps, respectively. We found that the embedded 5000 and 5000 Å-height of SiO2 pillars and air gaps array structure could enhance LED output power by more than 50% due to the enhanced guided-light scattering efficiency in our study.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 背景 1 1.2 研究動機 1 參考文獻 4 第二章 實驗原理與量測系統 6 2.1 實驗原理 6 2.1.1 發光二極體(Light Emitting Diodes;LEDs)原理 6 2.1.2 有機金屬氣相磊晶(Metal Organic Vapor Phase Epitaxy;MOVPE)原理 7 2.1.3 基本光學原理 8 2.2 量測系統 9 2.2.1 電流-電壓量測系統 9 2.2.2 發光二極體輸出功率(Output Power)量測系統 9 2.2.3 掃描式電子顯微鏡(Scanning Electron Microscopy;SEM) 9 參考文獻 14 第三章 實驗製程方法與步驟 15 3.1 週期性介質排列結構於N型氮化鎵層製程 15 3.1.1 微米二氧化矽圓柱製程步驟 15 3.1.2 週期性介質排列結構於N型氮化鎵層磊晶製程 17 3.2 週期性介質排列結構於N型氮化鎵層發光二極體製程 19 3.2.1 氮化鎵發光二極體黃光製程步驟 19 3.2.2 高台蝕刻(Mesa etching) 20 3.2.3 熱處理(Thermal annealing) 21 3.2.4 蒸鍍P-N電極 21 參考文獻 27 第四章 實驗結果分析與討論 28 4.1 二氧化矽圓柱(SiO2 pillar)與空隙(Air gap)週期性結構於N型氮化鎵層發光二極體之探討 28 4.2 空氣洞(Air void)週期性結構於N型氮化鎵層發光二極體之探討 34 4.3 不同介質週期性結構於N型氮化鎵層發光二極體之探討 39 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 67

    第一章
    [1]H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., Vol. 76, No. 3, pp. 1363-1398, 1994.
    [2]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN / GaN / AlGaN-based laser diodes grown on GaN substrates,” Appl. Phys. Lett., Vol. 72, No. 16, pp. 2014-2016, 1998.
    [3]M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., Vol. 79, pp. 114-125, 1996.
    [4]S. J. Pearton, J. C. Zolper, R. J. Shul, and FRen, “GaN: Processing, defects, and devices,” J. Appl. Phys., Vol. 86, p.1, 1999.
    [5]E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308, 1274, 2005.
    [6]Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett., vol. 93, p.191103, 2008.
    [7]Z. H. Feng, Y. D. Qi, Z. D. Lu and Kei May Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metal organic vapor-phase epitaxy”, Journal of Crystal Growth , Vol. 272, Issues 1-4, pp.327-332,2004.
    [8]Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., Vol. 93, No. 11, pp.9383-9385, 2003.
    [9]J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise,G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett., Vol. 78, No. 22, pp.3379-3381, 2008.

    第二章
    [1]楊亞諭, “光致電化學氧化與壓印技術於氮化物發光二極體之研究,” 國立成功大學光電科學與工程研究所, 2009.
    [2]黃景蜂, “具有倒置電極之氮化鎵系列發光二極體特性分析,” 國立成功大學光電科學與工程研究所, 2009.
    [3]施敏, “半導體元件物理與製作技術,” 國立交通大學出版社, 2007.
    [4]徐仲凱, “光纖式波導干涉儀之設計與研製,” 國立臺灣大學工學院應用力學研究所, 2007.

    第三章
    [1]K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Uniform Array of GaN Quantum Dots in AlGaN Matrix by Selective MOCVD Growth,” Phys. Stat., Vol. 228, No.1, pp. 187-190, 2001.
    [2]D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett., Vol.89, pp.161105, 2006.

    第四章
    [1]E. F. Schubert, “Light-Emitting Diodes,” Cambridge University Press, 2006.
    [2]施敏, “半導體元件物理與製作技術,” 國立交通大學出版社, 2007.
    [3]B. Beaumont, M. Vaille, G. Nataf, A. Bouillé, J.-C. Guillaume, P. Vénnègues, S. Haffouz and Pierre Gibart, “Mg-enhanced lateral overgrowth of GaN on patterned GaN/sapphire substrate by selective Metal Organic Vapor Phase Epitaxy,” MRS Internet J. Nitride Semicond. Res., 1998.
    [4]林俊安, “發光二極體之能帶缺陷對輸出特性影響之研究,” 國立成功大學電機工程學系微電子所, 2004.
    [5]Akinori Koukitu and Hisashi Seki, “Unstable Region of Solid Composition in Ternary Nitride Alloys Grown by Metaloranic Vapor-Phase Epitaxy,” J. J. Appl. Phys, Vol. 35, pp. 1638-1640, 1996.

    無法下載圖示 校內:2013-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE