| 研究生: |
黃乙記 Huang, Yi-chi |
|---|---|
| 論文名稱: |
應用微壓印定位技術分析流體剪應力對細胞遷移之研究 Study of Cell Transmigration under Shear Stress with Micro-impriting Technology |
| 指導教授: |
林裕城
Lin, Yu-cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 流體剪應力 、細胞共同培養 、毛細作用微鑄模 、微接觸壓印 |
| 外文關鍵詞: | flow shear stress, Micro-contact printing, Micro-molding in Capillaries, Cell co-culture |
| 相關次數: | 點閱:218 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要的貢獻為,建構出新型的平面式細胞共同培養裝置,並且將其應用於有施予、以及不施予流體剪應力的不同培養環境變異下,以探討內皮細胞與平滑肌細胞之互相影響與遷移狀態。此方法是利用毛細作用原理,將細胞吸入細胞共同培養裝置中,在特定的反應區內進行精確的分離培養。有別於傳統方式,此平面式細胞共同培養方法是以創新技術將兩種不同的細胞進行分離,以微米的間距培養於同一晶片上,並且可同時觀察細胞間的交互誘導作用與遷移情況。本研究亦使用CFDRCTM套裝軟體,模擬出循環式流體裝置中的流場分佈方向,以及可施予細胞的流體剪應力大小,並用實驗佐證其結果。
主要研究成果為成功的發展出對兩種不同細胞進行分離且共同培養技術,亦製作出低成本且多功能的微壓印顯微系統與循環式流體裝置,並運用於細胞定位以及探討剪力流對細胞影響之實驗。在剪力流對正常細胞與癌化細胞之黏附性的比較結果部分,正常細胞可承受的流體剪應力是癌細胞的2.3倍以上。在剪力流對細胞成長方向性的改變之結果部分,心肌細胞在承受5.11 dyne/cm2的流體剪應力時,會朝著流場方向排列成長;內皮細胞在承受8.12 dyne/cm2的流體剪應力時,會朝著流場方向排列成長。在施予與未施予流體剪應力的不同環境下,分別探討兩種不同細胞以500 um間距分離且共同培養於同一晶片上之結果部分,(1)內皮細胞與平滑肌細胞互相接觸的速度,在沒有流體剪應力的作用下,會比在有流體剪應力的作用下還要快,故流體剪應力可以達到干擾細胞互相接觸的效果、(2)流體剪應力只會抑制平滑肌細胞的遷移速度,但對內皮細胞則影響較小、(3)在內皮細胞與平滑肌細胞共同培養時,並無互相誘導作用,其原因是500 um間距仍然過大,導致兩種細胞的影響變小。
The contribution of this study is that a novel cell co-culture device was established that can be utilized under environment of shear stress. The method utilizes the capillary theorem to orientate cells in specific area and manages to separate and co-culture two different types of cell between micrometer distance for observation of the interaction and cell transmigration, comparing to the traditional co-culture methods. In this study, the fluid field and shear stress about recyclable fluidic device reaction area are simulated using CFDRCTM and later experiments are carried out to testify the simulation.
Our primary achievement in this study is to have successfully developed the cell co-culture method and fabricated microscopy-based microcontact printing and recyclable fluidic device for low-cost and high performance. The flow shear stress that normal cell can yield is at least 2.3 times of that of cancer cell, comparing normal cell adhesion with cancer cell adhesion under flow shear stress. The results of cell growth direction under flow shear stress show that yielding 5.11 dyne/cm2 of shear stress, H9c2 cells will grow along flow direction while yielding 8.12 dyne/cm2 of shear stress, endothelial cells grow along flow direction. Placing under flow shear stress or non-flow shear stress, we observed and studied the different results of separating endothelial cells and smooth muscle cells in 500 um space and co-culturing them, (1) the touch velocity of endothelial cells and smooth muscle cell under non-flow shear stress is bigger than that under flow shear stress, indicating shear stress can suppress the touch velocity of endothelial cells and smooth muscle cell, (2) though the flow shear stress can suppress the touch velocity of smooth muscle cell, it has a small effect on endothelial cells, (3) there is no induced reaction between endothelial cells and smooth muscle cells no matter they were co-cultured under flow shear stress or not, due to the large distance of 500 um makes the effect of endothelial cells and smooth muscle cells become small.
[1] K. Durick and P. Negulesu, “Cellular biosensors for drug discovery,” Biosensors & Bioelectronics, 16, 587-592, 2001.
[2] R. G. Harrison, “The reaction of embryonic cells to solid structures,” Journal of Experimental Zoology, 17, 521-544, 1914.
[3] P. Weiss, “Cellular dynamics,” Reviews of Modern Physics, 31, 11-20, 1959.
[4] Y. A. Rovensky, I. L. Slavnaja and J. M. Vasiliev, “Behaviour of fibroblast-like cells on grooved surfaces,” Experimental Cell Research, 65, 193-201, 1971.
[5] S. B. Carter, “Principles of cell motility: the direction of cell movement and cancer invasion,” Nature, 208, 1183-1187, 1965.
[6] R. A. Rovasio, A. Delouvee, K. M. Yamada, R. Timpl and J. P. Thiery, “Neural crest cell migration: requirements for exogenous fibronectin and high cell density,” Journal of Cell Biology, 96, 462-473, 1983.
[7] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh and R. G. Nuzzo, “Comparison of the structures and wetting properties of self-assembled monolayers of normal-alkanethiols on the coinage metal-surfaces, Cu, Ag, Au,” Journal of the American Chemical Society, 113, 7152-7167, 1991.
[8] A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Applied Physics Letters, 63, 2002-2004, 1993.
[9] A. Kumar, H. A. Biebuyck and G. M. Whitesides, “Patterning self-assembled monolayers applications in materials science,” Langmuir, 10, 1498-1511, 1994.
[10] R. J. Klebe, “Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues,” Experimental Cell Research, 179, 362-373, 1988.
[11] P. Clark, P. Connolly and G. R. Moores, “Cell guidance by micropatterned adhesiveness in vitro,” Journal of Cell Science, 103, 287-292, 1992.
[12] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, “Geometric control of cell life and death,” Science, 276, 1425-1428, 1997.
[13] D. W. Branch, J. M. Corey, J. A. Weyhenmeyer, G. J. Brewer and B. C. Wheeler, “Microstamp patterns of biomolecules for high-resolution neuronal networks,” Medical and Biological Engineering and Computing, 36, 135-141, 1998.
[14] E. Delamarche, A. Bernard, H. Schmid, B. Michel and H. Biebuyck, “Patterned delivery of immunoglobulins to surfaces using microfluidic networks,” Science, 276, 779-781, 1997.
[15] E. Delamarche, A. Bernard, H. Schmid, B. Michel and H. Biebuyck, “Microfluidic networks for chemical patterning of substrates: design and application to bioassays,” Journal of the American Chemical Society, 120, 500-508, 1998.
[16] J. C. Chang, G. J. Brewer and B. C. Wheeler, “A modified microstamping technique enhances polylysine transfer and neuronal cell patterning,” Biomaterials, 24, 2863-2870, 2003.
[17] S. W. Rhee, A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman and N. L. Jeon, “Pattern cell culture inside microfluidic devices,” Lab on a Chip, 5, 102-107, 2005.
[18] K. S. Rhode, T. Lambrou, D. J. Hawkes and A. M. Seifalian, “Novel approaches to the measurement of arterial blood flow from dynamic digital X-ray images,” IEEE Transactions on Medical Imaging, 24, 500-513, 2005.
[19] K. Boryczko, W. Dzwinel and D. A. Yuen, “Dynamical clustering of red blood cells in capillary vessels,” Journal of Moaecular Modeling, 9, 16-33, 2003.
[20] G. K. Owens, M. S. Kumer and B. R. Wamhoff, “Molecular regulation of vascular smooth muscle cell differentiation in development and disease,” Physiological Review, 84, 767-801, 2004.
[21] M. M. Mazanet and C. C. W. Hughes, “B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis,” Journal of Immunology, 169, 3581-3588, 2002.
[22] R. M. Nerem, “Vascular fluid mechanics the arterial wall and atherosclerosis,” Journal of Biomechanical Engineering, 114, 274-282, 1992.
[23] R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M. Whitesides and D. E. Ingber, “Pore formation in fluctuating membranes,” Science, 264, 696-698, 1994.
[24] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, “Geometric control of cell life and death,” Science, 30, 1425-1428, 1997.
[25] C. F. Dewey Jr., S. R. Bussolari, M. A. Gimbrone Jr. and P. F. Davies, “The dynamic response of vascular endothelial cells to fluid shear stress,” Journal of Biomechanical Engineering, 103, 177-185, 1981.
[26] R. M. Nerem, M. J. Levesque and J. F. Cornhill, “Vascular endothelial morphology as an indicator of blood flow,” Journal of Biomechanical Engineering, 103, 172-176, 1981.
[27] A. R. Wechezak, R. F. Viggers and L. R. Sauvage, “Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress,” Laboratory Investigation, 53, 639-647, 1985.
[28] N. Resnick and M. A. Gimbrone, “Hemodynamic forces are complex regulators of endothelial gene-expression,” FASEB Journal, 9, 874-882, 1995.
[29] E. V. Barakat, P. A. Leaver, Pappone and P. F. Davies, “A flow-activated chloride-selective membrane current in vascular endothelial cells,” Circulation Research, 85, 820-828, 1999.
[30] G. Garcia-Cardena, J. Comander, K. R. Anderson, B. R. Blackman and M. A. Gimbrone, “Biomechanical activation of vascular endothelium as a determinant of its functional phenotype,” Proceedings of the National Academy of Sciences USA, 98, 4478-4485, 2001.
[31] B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel and R. Stutz, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM Journal of Research & Development, 45, 697-719, 2001.
[32] S. M. Sze, VLSI Technology, 386-400, McGraw-Hill, New York, 1998.
[33] http://www.microchem.com/, Specialty electronic materials for emerging and niche lithographic processes, 2005.
[34] http://www.agac.umn.edu/microarray/protocols/protocols.htm, Microarray protocols, 2000.
[35] 莊達人,VLSI 製造技術,高立圖書,235-261,民國九十六年。
[36] B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood and D. J. Beebe, “Three dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Micro-Electromechanical System, 9, 76-81, 2000.
[37] T. R. Hsu, “MEMS & Microsystems Design and Manufacture,” McGraw-Hill, Boston, 2002.
[38] D. J. Campbell, K. J. Beckman, C. E. Calderon, P. W. Doolan, R. H. Moore, A. B. Ellis and G. C. Lisensky, “Replication and compression of bulk surface structures with polydimethylsiloxane elastomer,” Journal of Chemical Education, 76, 537, 1999.
[39] D. Armani, C. Liu and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” '99, Twelfth International Conference on Micro Electro Mechanical Systems, IEEE, Orlando, USA, 222-227, 1999.
[40] J. J. Chiu, L. J. Chen, C. I. Lee, P. L. Lee, D. Y. Lee, M. C. Tsai, C. W. Lin, S. Usami and S. Chien, “ Mechanisms of induction of endothelial cell E-selectin expression by smooth muscle cells and inhibition by shear stress”, Blood, Dol 10.1182/blood-2006-08-040097, 2007.
校內:2017-05-28公開