| 研究生: |
林詣超 Lin, Yi-Chao |
|---|---|
| 論文名稱: |
以晶粒製程的方式改善氮化鎵系列發光二極體之效率及在矽基板上成長氮化鎵系列發光二極體之研究 Efficiency of GaN based light emitting diode improved by chip process technique and the growth of GaN based light emitting diode on Si substrate |
| 指導教授: |
張守進
Chang, Shoou-Jinn 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 發光二極體 、氮化鎵 |
| 外文關鍵詞: | GaN, LED |
| 相關次數: | 點閱:56 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在氯氣/氦氣 (Cl2/He) 的氣氛下以電感感應耦合電漿活性離子蝕刻機台(ICP) 蝕刻N 型氮化鎵 (GaN) 可得到平坦的蝕刻表面。在實驗中我們可以得到最大蝕刻速率為每分鐘8400A。此外,在蝕刻過後的表面鍍上鈦/鋁/鈦/金可得到對氮化鎵的特徵電阻值為 1.37x10-6 ohm-cm2。上述的實驗結果都可歸因於 He 的質量較輕,蝕刻的過程中對蝕刻表面的傷害也相對減小。
我們也針對鎳/氧化銦錫(Ni/ITO)及其應用在GaN系列發光二極體 (LED) 與高功率大面積發光二極體之P 型透明導電層進行研究。實驗的結果發現 Ni/ITO 在藍光波長470nm 時的穿透率可達到 86.6%,實際 LED 元件製作結果顯示,Ni/ITO 應用在 GaN 系列發光二極體的 P 透明導電層,20mA 時的 LED 順向偏壓為 3.26 伏特,輸出光功率為 6.59mW。此外, Ni/ITO 也可以應用在 GaN 系列高功率大面積 LED 上作為透明電極。實驗結果顯示在 200mA 時高功率 LED 的順向偏壓為 3.3 伏特,其輸出功率為 16.52mW。與傳統 Ni/Au 做為 GaN 系列 LED 透明電極比較,使用 Ni/ITO 的 GaN 系列 LED 在可靠度方面與傳統的 LED 不相上下。
另外,我們也嘗試在條狀藍寶石基板上成長氮化鎵系列 LED。AFM 的結果說明在條狀基板上成長的 LED 表面較為粗糙。量測的結果發現在條狀基板上成長之 LED,其亮度約比傳統的 LED 高 50%,同時可靠度也得以提升。
我們也嘗試在矽基板上成長 GaN。使用 AlN 緩衝層,我們可以在矽基板上成長出鏡面的 GaN。另外藉著 AlN/AlGaN 做為應力緩衝層,我們可以在矽基板上成長至少 1um 表面無龜裂的 GaN。由金半金光檢測器的製造及量測結果證明GaN 磊晶層具有良好的品質。最後我們將在矽基板上成長 GaN 的經驗應用於 LED。在 20mA 時 LED 的光輸出功率為 300uW。對於水平操作與垂直元件在 20mA 的順向電壓分別為 5.95 伏特及 9.75 伏特。
We investigated n-GaN etched by an inductively coupled plasma (ICP) etcher using Cl2/He as the etching gases. Smooth etched n-GaN surface could be observed by using Cl2/He as etching gas. The maximum etching rate could reach 8400A/min for n-GaN etched in Cl2/He. Furthermore, specific contact resistance of 1.37x10-6 ohm-cm2 between Ti/Al/Ti/Au and n-GaN for n-GaN etched by Cl2/He. Smooth surface and small contact resistance is probably due to the lighter He, which induce smaller plasma damages during ICP etching.
The optical and electrical properties of Nickel/indium tin oxide Ni(3.5nm)/ITO(60nm) films was studied. Normalized transmittance of Ni/ITO films could reach 86.6% at 470nm, which was much larger than that of the Ni/Au film. Ni/ITO could also form good ohmic contact on top of p-GaN. Nitride-based light-emitting diodes (LEDs) and large size (i.e. 1mmx1mm) high power nitride-based LEDs with Ni/ITO p-contact layers were also fabricated. Forward voltage of LED with Ni/ITO p-contact layer was 3.26V and 3.3V for standard LEDs and high power LEDs, respectively. With Ni/ITO p-contact layer, measured 20mA output power of standard LEDs could reach 6.59mW. On the other hand, output power of high power LEDs could also reach 16.52mW with LEDs operated at 200mA injection current. Life test also indicates that LEDs with Ni/ITO p-contact are at least as reliable as LEDs with Ni/Au p-contact.
InGaN/GaN blue light emitting diodes (LEDs) prepared on patterned and sapphire substrates were fabricated. Atomic force microscopy (AFM) images show the micro surface roughness could be observed from the LEDs prepared on patterned substrates. It was also found that electroluminescence (EL) intensity of LEDs grown on patterned sapphire substrate was about 50% larger than that prepared on conventional sapphire substrates. Reliability of LEDs grown on patterned sapphire substrates was also found to be better.
Mirror like GaN layer could successfully grown on Si substrate with AlN as template layer. The thickness of crack free undoped GaN could reach at least 1um by insert AlN/AlGaN as strain relax layer. Fabrication of GaN based MSM photodetector on Si substrate suggests that the quality of our GaN sample was reasonably good. GaN based LEDs grown on Si substrate were also fabricated. Forward voltage of LED was 5.95V and 9.75V for n contact on top of GaN side and back of Si side, respectively. It was also found that measured 20mA output power of standard LEDs was 300uW.
Ch.1
[1] M.A. Hasse, J. Qiu, J.M. DePuydt and H. Cheng, Appl. Phys. Lett. 59 (1991)
1272.
[2] Y. Matsushita, K. Koga, Y. Ueda and T. Yamaguchi, Oyo Buturi 60 (1991),159.
[3] S. Nakamura, Jpn. J. Appl. Phys. 35 (1B), L77 (1996).
[4] S. Nakamura, Jpn. J. Appl. Phys. 36, No. 12A, Dec., L1568 (1997).
[5]. S. Strite, M.E. Lin and H. Morkoc, Thin Solid Films 231, 197.
[6] R.F. Davis, Proc. IEEE 5 (New York: IEEE, 1991), p. 702.
[7] H.P. Maruska and J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
[8] P.B. Perry and R.F. Rutz, Pppl. Phys. Lett. 33, 319 (1978)
[9] H. Amano, M. Senoh, S. Nagahama, and Y. Sugimoto, Jpn. J. Appl. Phys. 35,
L74 (1996)
[10] S. Nakamura, Jpn. J. Appl. Phys. 31 (2B), L139 (1992)
[11] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai,
Jpn. J. Appl. Phys., 34, L1332 (1995).
[12] E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumout, P.
Gibart, J. A. Munoz, and F. Cusso, “High-performance GaN p-n junction
photodetectors for solar ultraviolet applications,” Semicond. Sci.
Technol., vol. 13, pp. 1042–1046, June 1998.
[13] S. T. Sheppard, K. Doverspike,W. L. Pribble, S. T. Allen, J.W. Palmour, L.
T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMTs on
semi-insulating silicon carbide substrates,” IEEE Electron Device Lett.,
vol. 20, pp. 161–163, Apr. 1999.
[14] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64 (1994) 1687.
[15] M. Kazumura, I. Ohta, and I. Teramoto, “ Feasibility of the LPE growth of
AlxGayIn1-x-P on GaAs substrate”, Jpn.J. Appl. Phys., Vol. 22, 654(1983).
[16] H. M. Manasevit, “ Single-crystal gallium arsenide on insulating
substrate”, Appl. Phys. Lett., Vol. 12, 156(1968).
[17] H. M. Manasevit, F. Erdmann and W. Simpson, J. Electrochem. Soc., Vol.
118, 1864(1971).
[18] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “ Homogeneous and
heterogeneous thermal decomposition rates of trimethylgallium and arsine
and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth.
Vol. 77, 188(1986).
[19] T. Makimoto, Y. Yamauchi, N. Kobayashi, and Y. Horikoshi, “ In situ
optical monitoring of the GaAs growth process in MOCVD ”, Jpn. J. Appl.
Phys. Vol.29, L207 (1990).
[20] S. L. Wright, T. N. Jackson, and R. F. Marks, “ Apparent temperature
oscillation during molecular beam epitaxy: A useful interferometric
effect”, J. Vac. Sci. & Technol. Vol.B8, 288(1990).
[21] A. J. Spring Thorpe and A. Majeed, “ Epitaxial growth rate measurements
during molecular beam epitaxy “, J. Vac. Sci. & Technol. Vol.B8, 266
(1990).
[22] T. Okamoto and A. Yoshikawa, “ Effects of substrate materials and their
properties on photoassisted metalorganic vapor phase epitaxy of ZnSe”,
Jpn. J. Appl. Phys. Vol.30, L156(1991).
[23] S. Nakamura, “ In situ monitoring of GaN growth using interference
effects”, Jpn. J. Appl. Phys. Vol.30, 1620(1991).
[24] I. P. Herman, “Optical Diagnostics for Thin Film Processing”, (Academic,
San Diego, 1996).
Ch.2
[1] R. F. Davis, Proc. IEEE 79,702 (1991)
[2] J. K. Sheu, Y. K. Su, G.C. Chi, M. J. Jou, C. C. Liu, C. M. Chang and W. C.
Hung, J. Appl. Phys. 85, 1970 (1999)
[3] J. Lee, H. Cho, D.C. Hays, C. R. Abernathy, S. J. Pearton, R. J. Shul and
G. A. Vawter, IEEE Journal of quantum electronics, vol. 4, 557, 1998
[4] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, Appl. Phys. Lett.
64, 887 (1994).
[5] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger S. J. Pearton,
C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tarn, and M. Schurman,
Appl. Phys. Lett. 69, 1119 (1996).
[6] R. J. Shul, S. P. Kilcoyne, M. Hagerott Crawford, J. E. Parmeter, C.
B.Vartuli, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 66, 1761
(1995).
[7] R. J. Shul, GaN and related materials, p.409-410
[8] C. B. Vartuli, J. D. Mackenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton,
and R. J. Shul, J. Appl. Phys. 80, 3705 (1996).
[9] S.M. Sze, Physics of Semiconductor Devices, 304 (1981)
[10] Donald A. Neamen, Semiconductor Physics and Devices, 325 (1997)
[11] F.A. Padovani and R. Stratton, “Field and Thermionic-Field Emission in
Schottky Barriers,” Solid State Electron., 9, 695 (1966).
[12] C.Y. Chang, Y. K. Fang, and S. M. Sze, “Specific Contact Resistance of
Metal-semiconductor Barriers,” Solid State Electron., 14, 541 (1971).
[13] B.P.Johnson and C.I. Huang, J. Electrochem. Soc. 125, 473 (1978).
[14] W. Kellner, Siemens Forsch. –u. Entwickl. –Ber 4, 137 (1975).
[15] R.K. Willardson and A,C, Beer, Semiconductors and Semimetals, Vol.
7,pp. 175-183 . Academic Press, Ner York (1971).
[16] V. Ya. Niskov and G. A. Kuberskii, Resistance of ohmic contacts between
metal and semiconductor films. Sov. Phys. Semicond. 4, 1553 (1971).
[17] W.G. Bickley, Bessel Functions, pp. 220-255. University Press, Cambridge
(1960).
[18] S. S. Cohen and G. Sh. Gildenblat, VLSI Electronics, 13, Metal-
Semiconductor Contacts and Devices, Academic Press, Orlando, FL, 1986, 115.
[19] M. Ahmad and B. M. Arora, “Investigation of AuGeNi Contacts Using
Rectangular and Circular Transmission Line Model, “Silid-State Electron.
35, 1441-1445, Oct. 1992.
[20] Y. B. Hahn, D. C. Hays, S. M. Donovan, C. R. Abemathy, J. Han, R. J. Shul,
H. Cho, K. B. Jung, and S. J. Pearton, “Effect of additive noble gases in
chlorine-based inductively coupled plasma etching of GaN, InN, and AlN”
J. Vac. Sci. Technol. A 17(3), pp 768-773, May/Jun 1999.
Ch.3
[1] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H.
Chen, J. K. Sheu and J. F. Chen, IEEE Tran. Electron. Dev., Vol. 49, No. 6,
pp. 1093-1095, June 2002.
[2] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H.
Chen and J. K. Sheu, IEEE J. Quantum. Electron., Vol. 38, No. 5, pp. 446-
450, May 2002.
[3] C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H.
Chen and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 23, No. 5 , pp. 240-
242, May 2002
[4] C. H. Ko, Y K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J.
Lin and J. Webb, Jpn. J. Appl. Phys., Vol. 41, No. 4B, pp. 2489-2492, April
2002.
[5] R. H. Horng, D. S. Wuu, Y. C. Lien, W. H. Lan, “Low-resistance and high-
transparency Ni’indium tin oxide ohmic contacts to p-type GaN” Appl.
Phys. Lett., vol. 79, pp. 2925-2927, 2001.
[6] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J.
Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S.
Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-
power AlGaInN flip-chip light-emitting diodes” Appl. Phys. Lett., Vol. 78,
pp. 3379-3382, 2001
[7] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K.
Su, S. J. Chang and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 22, No. 10,
pp. 460-462, October 2001
[8] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, C. H. Chen and G.
C. Chi, Jpn. J. Appl. Phys. Lett., Vol. 41, No. 2A, pp. L112-L114, February
2002.
[9] S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang,
T. P. Chen and K. H. Huang, Appl. Phys. Lett., Vol. 78, No. 3, pp. 312-313,
January 2001
[10] W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W.
C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, Jpn. J. Appl. Phys.
Lett., Vol. 39, No. 11B, pp. L1138-L1140, November 2000.
[11] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.
DenBaars, Appl. Phys. Lett., vol. 74, pp. 3930-3932, 1999.
[12] Y.-K. Song, M. Diagne, H. Zhou, and A. V. Nurmikko, R. P. Schneider, Jr.
and T. Takeuchi, Appl. Phys. Lett., vol. 77, pp. 1744-1746, 2000.
[13] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, I.
C. Lin and C. H. Chen, Jpn. J. Appl. Phys., Vol. 41, No. 6A, pp. 3643-
3645, June 2002.
[14] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J.
Chang and Y. K. Su, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-
452, April 2002.
[15] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw,
IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283,
Mar/Apr 2002.
[16] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen,
IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 284-288,
Mar/Apr 2002.
[17] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C.
H. Liu and U. H. Liaw, IEEE Electron. Dev. Lett., Vol. 23, No. 3, pp. 130-
132, March 2002.
[18] C. H. Ko, S. J. Chang, Y. K. Su, W. H. Lan, J. F. Chen, T. M. Kuan, Y. C.
Huang, C. I. Chiang, J. Webb and W. J. Lin, Jpn. J. Appl. Phys. Lett.,
Vol. 41, No. 3A, pp. L226-L228, March 2002.
[19] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and
Y. K. Su, J. Appl. Phys., Vol. 91, No. 4, pp. 1845-1848, February 2002.
[20] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J.
K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp.
848-850, August 2001.
[21] W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE
Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, June 2001.
[22] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, Jpn. J.
Appl. Phys., Vol.40, No. 4B, pp. 2996-2999, April 2001.
[23] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin,
Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2762-2764, April 2001.
[24] K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, J.
Crystal Growth, Vol. 220, pp. 405-412, December 2000.
Ch.4
[1] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H.
Chen, J. K. Sheu and J. F. Chen, "InGaN/GaN tunnel injection blue light
emitting diodes", IEEE Tran. Electron. Dev., Vol. 49, No. 6, pp. 1093-1095,
June 2002.
[2] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H.
Chen and J. K. Sheu, "Influence of Si-doping on the characteristics of
InGaN/GaN multiple quantum well blue light emitting diodes", IEEE J.
Quantum. Electron., Vol. 38, No. 5, pp. 446-450, May 2002.
[3] C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H.
Chen and G. C. Chi, "InGaN/GaN light emitting diodes activated in O2
ambient", IEEE Electron. Dev. Lett., Vol. 23, No. 5 , pp. 240-242, May 2002
[4] C. H. Ko, Y K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J.
Lin and J. Webb, "A p-down InGaN/GaN MQW LED structure grown by MOVPE",
Jpn. J. Appl. Phys., Vol. 41, No. 4B, pp. 2489-2492, April 2002.
[5] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H.
Kudo and T. Taguchi, "High output power InGaN ultraviolet light emitting
diodes fabricated on patterned substrates using metalorganic chemical vapor
deposition", Phys. Stat. Sol. (a), Vol. 188, No. 1, pp. 121-125, 2001.
[6] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H.
Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes",
IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283,
Mar/Apr 2002.
Ch.5
[1] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H.
Chen, J. K. Sheu and J. F. Chen, "InGaN/GaN tunnel injection blue light
emitting diodes", IEEE Tran. Electron. Dev., Vol. 49, No. 6, pp. 1093-1095,
June 2002.
[2] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H.
Chen and J. K. Sheu, "Influence of Si-doping on the characteristics of
InGaN/GaN multiple quantum well blue light emitting diodes", IEEE J.
Quantum. Electron., Vol. 38, No. 5, pp. 446-450, May 2002.
[3] C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H.
Chen and G. C. Chi, "InGaN/GaN light emitting diodes activated in O2
ambient", IEEE Electron. Dev. Lett., Vol. 23, No. 5 , pp. 240-242, May 2002
[4] C. H. Ko, Y K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J.
Lin and J. Webb, "A p-down InGaN/GaN MQW LED structure grown by MOVPE",
Jpn. J. Appl. Phys., Vol. 41, No. 4B, pp. 2489-2492, April 2002.
[5] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K.
Su, S. J. Chang and G. C. Chi, "Low-operation voltage of InGaN/GaN light-
emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice
tunneling contact layer", IEEE Electron. Dev. Lett., Vol. 22, No. 10, pp.
460-462, October 2001
[6] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, C. H. Chen and G.
C. Chi, "Low temperature activation of Mg-doped GaN in O2 ambient", Jpn. J.
Appl. Phys. Lett., Vol. 41, No. 2A, pp. L112-L114, February 2002.
[7] S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang,
T. P. Chen and K. H. Huang, "Microwave treatment to activate Mg in GaN",
Appl. Phys. Lett., Vol. 78, No. 3, pp. 312-313, January 2001
[8] W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W.
C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, "Optical and electrical
characteristics of CO2 laser treated Mg-doped GaN film", Jpn. J. Appl.
Phys. Lett., Vol. 39, No. 11B, pp. L1138-L1140, November 2000.
[9] A. Dadgar, A. Strittmatter, J. Blasing, M. Poschenrieder, O. Contreras, P.
Veit1, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel,
T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and
A. Krost, “Metalorganic chemical vapor phase epitaxy of gallium-nitride on
silicon”, phys. stat. sol. (c) 0, No. 6, 1583– 1606 (2003)
[10] H.M. Manasevit, F.M. Erdmann, and W.J. Simpson, J. Electrochem. Soc. 118,
1864 (1971).
[11] T. Kachi, K. Tomita, K. Itoh and H. Trando, Appl. Phys. Lett. 72 (1998)
704.
[12] Y.B. Lee, T. Wang, Y. H. Liu, J. P. Ao, Y. Izumi, Y. Lacroix, H. D. Li, J.
Bai, Y. Naoi and S. Sakai, Jpn, J. Appl. Phys. 41 (2002) 4450.
[13] S. E. Park, S. M. Lim, C. R. Lee, C. S. Kim and B. O., J. Crystal Growth
249 (2003) 487.
[14] S. Sakai, T. Wang, Y. Morishima and N. Naoi, J. Crystal Growth 221 (2000)
334.
[15] C. Y. Chang & S. M. Sze, “ULSI Technology”, McGraw Hill, pp. 60-104
(1996)
[16] In-Hwan Lee, S.J. Lim and Yongjo Park, "Growth and optical properties of
GaN on Si(111) substrates", Journal of Crystal growth, 235, pp, 73-78,
(2002)
Ch.6
[1] Y. C. Lin, S. J. Chang, Y. K. Su, J. F. Chen, S. C. Shei, S. J. Hsu, ,
“Inductively coupled plasma etching of GaN using Cl2/He gases”, Mater.
Sci. Eng. B, Vol. 98, No. 1, pp. 60-64, February 2003.
[2] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S.
J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen and B. R. Huang, “Nitride-based
light emitting diodes with Ni/ITO p-type ohmic contacts”, IEEE Photon.
Technol. Lett., Vol. 14, No. 12, pp. 1668-1670, December 2002.
[3] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, S. C. Chang, S. C. Shei, C.
W. Kuo and S. C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO
and ITO p-type contacts”, Solid State Electron., Vol. 47, No. 5, pp. 849-
853, May 2003.
[4] Y. C. Lin, S. J. Chang, Y. K. Su, C. S. Chang, S. C. Shei, J. C. Ke, H. M.
Lo, S. C. Chen and C. W. Kuo, "High power nitride based light emitting
diodes with Ni/ITO p-type contacts", Solid State Electron., Vol. 47, No. 9,
pp. 1565-1568, September 2003.
[5] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C.
Ke, C. W. Kuo, S. C. Chen and C. H. Liu, "Nitride-based LEDs fabricated on
patterned sapphire substrates", Solid State Electron., Vol. 47, No. 9, pp.
1539-1542, September 2003.
[6] S. J. Chang, Y. K. Su, Y. C. Lin, R. W. Chuang, C. S. Chang, J. K. Sheu, T.
C. Wen, S. C. Shei, C. W. Kuo and D. H. Fang, "MOCVD growth of InGaN/GaN
light emitting diodes on patterned sapphire substrates", Phys. Stat. Sol.
C, Vol. 0, No. 7, pp. 2253-2256, December 2003.