簡易檢索 / 詳目顯示

研究生: 曹晏禎
Cao, Yan-Jhen
論文名稱: 10kW水平軸式風力發電機智慧型結構與監控系統研究
The Study of Smart Structure and Monitoring System for a 10 kW Horizontal Axis Wind Turbine
指導教授: 鄭泗滄
Jenq, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 106
中文關鍵詞: 水平軸式風力葉片有限元素分析鏡射式疊層螺旋式疊層埋入式製程應變規無線傳輸
外文關鍵詞: Horizontal Axial Wind Turbine Blade, finite element, Mirror Lay-up, Helical Lay-up, embedded, strain gauge, wireless transmission
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要針對10kW等級之水平軸式風力葉片,應用有限元素分析軟體LS-DYNA模擬在葉片達額定轉速(Rated Speed)下,其葉片結構之彎曲(bending)與扭轉(torsion)變形對發電效能的影響;並探討葉片蒙皮(skin)疊層角度,使用鏡射式疊層(Mirror Lay-up)與螺旋式疊層(Helical Lay-up)方式,將葉片蒙皮(skin)疊層設計分成五種類別,指定為A、B、C、D、E五組。結果顯示,疊層設計B對發電效能與結構負載具有最佳表現。於葉片監控方面,採用埋入式製程裝設應變規 (strain gauge) 感測器;同時建立一套無線傳輸之葉片監控系統,並透過實驗測試檢驗系統之可靠度。

    The purpose of this work is to study the blade performance of the 10kW Horizontal Axial Wind Turbine (HAWT) on rated speed condition using finite element commercial LS-DYNA with implicit solver. The coupled torsion and bending effects were compared to each other for Mirror lay-ups and Helical lay-ups of the blade skin in detail. Subsequently, the group B shows the good results for the power performance at the rated speed is equal to 267.38 rpm. under 12 m/s wind speed. In addition, this work is also to develop and construct the wireless transmission system in order to monitor the signal from the embedded TML QFLA-5-11 strain gage when blade of the wind turbine is operating. Besides, upon examining numerical and experimental results for static bending test, the error deviation is presented within 10 %. The completed numerical results of power performance for the composite blade are reported and discussed.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.2.1葉片氣動力與效能分析 2 1.2.2葉片結構分析與設計 4 1.2.3葉片監控 5 1.3研究目的 6 1.4研究方法 7 第二章 風力發電機葉片設計原理 11 2.1前言 11 2.2複合材料力學理論 11 2.2.1單層板 12 2.2.2等效混合定律 14 2.2.3古典積層板理論 15 2.2.4破壞準則 16 2.3空氣動力學理論 19 2.3.1一維動量理論 19 2.3.2尾流效應 22 2.3.3葉素理論 23 2.3.4葉素動量理論 25 2.4葉片外型設計理論 26 第三章 葉片模型建構 36 3.1葉片構造與材料 36 3.2葉片有限元素模型 37 3.3有限元素模型收斂性測試 39 第四章 實驗與模擬驗證 46 4.1實驗介紹 46 4.1.1實驗步驟與儀器介紹 46 4.2葉片模擬分析結果 48 4.2.1葉片模態分析 48 4.2.2葉片彎曲負載分析 48 4.3模擬數據資料驗證 49 4.3.1葉片自然頻率 49 4.3.2葉片彎曲位移 50 4.3.3葉片彎曲應變 50 第五章 葉片結構耦合效能分析 59 5.1葉片氣動力負載與效能計算 59 5.2葉片結構耦合分析流程 61 5.3蒙皮初始疊層設計探討 62 5.4修正型耦合扭轉疊層設計探討 63 5.5結果與討論 66 第六章 葉片狀態監控 81 6.1葉片監控介紹 81 6.2應變規介紹 81 6.2.1惠司同電橋 82 6.3監控方式與設備介紹 83 6.4葉片應變規安裝與埋置 84 6.5監控介面與測試 85 第七章 結論與建議 96 7.1結論 96 7.2建議 98 參考文獻 99 附錄 102 A WT_PERF程式介紹 102 A.1 WT_PERF INPUT FILE 104

    [1]World Wind Energy Association, World Wind Energy Report 2010,April 2011
    [2]經濟部能源局,2010年能源產業技術白皮書,中華民國99年4月
    [3]Manwell, J.F., J.G. McGowan and A.L. Rogers. Wind Energy Explained. England: John Wiley& Sons, 2002.
    [4]Alireza Maheri, Siamak Noroozi, John Vinney,“Combined analytical-FEA-based coupled aero structure simulation of a wind turbine with bend–twist adaptive blades,”Renewable Energy 32 (2007) 916-930.
    [5]Alireza Maheri, Siamak Noroozi, Chris A. Toomer, John Vinney,"WTAB, a computer program for predicting the performance of horizontal axis wind turbines with adaptive blades,"Renewable Energy 31 (2006) 1673–1685
    [6]David Verelst,” Flexible wind turbine blades: a FEM-BEM coupled model approach,” Delft University of Technology ,January 2009
    [7]Tangler, J.L., “The Nebulous Art of Using Wind Tunnel Data for Predicting Rotor Performance,” Wind Energ. 2002; 5:245–257 (DOI: 10.1002/we.71)
    [8]Jureczko, M., Pawlak, M., and Mezyk, A., "Optimization of Wind Turbine Blades," Journal of Materials Processing Technology, 2005, 167(2-3), pp. 463-471.
    [9]周塏晉,”1KW風力發電葉片與塔架設計及監控系統研究”,航空太空工程研究所,國立成功大學,2011。
    [10]Karaolis, N. M., Mussgrove, P. J., and Jeronimidis, G.“Active and Passive Aeroelastic Power Control using Asymmetric Fibre Reinforced Laminates for Wind Turbine Blades,” Proc. 10th British Wind Energy Conf., D. J. Milbrow Ed., London, March 22-24, 1988.
    [11]Alan Turner, TomW. Graver, Micron Optics,"Structural Monitoring of Wind Turbine Blades Using Fiber Optic Bragg Grating Strain Sensors," SEM Annual Conference, June 7-10, 2010 Indianapolis, Indiana USA.
    [12]R. Andrew Swartz, Jerome P. Lynch, Stephan Zerbst, Bert Sweetman, Raimund Rolfes ,"Structural monitoring of wind turbines using wireless sensor networks", Smart Structures and Systems, Vol. 6, No. 3 (2010)
    [13]Hypermesh User Guide, Altair Engineering, Inc., 1992-2009.
    [14]ASTM-D3039, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials1," ASTM International.
    [15]ASTM-D1621, "Standard Test Method for Compressive Properties of Rigid Cellular Plastics," ASTM International.
    [16]LS-DYNA Keyword User Manual, Livemore, v. 971, Software Technology Corp., Livemore, CA (2007)
    [17]NWTC Design Codes (WT_Perf by Marshall Buhl). Last modified 7-February-2011; accessed 17-February-2011. http://wind.nrel.gov/designcodes/simulators/wtperf/.
    [18]LabVIEW™ Help ,Corp, National Instruments, June 2009.
    [19]XFLR5 version 6.06
    http://www.xflr5.com/xflr5.htm
    [20]Mark Drela and Harold Youngren, XFOIL version P4-v6.94,
    http://web.mit.edu/drela/Public/web/xfoil/
    [21]Selig, M.S., and McGranahan, B.D, “Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines,”NREL/SR-500-34515, Oct. 2004.
    [22]Craig Hansen, NWTC Design Code AirfoilPrep
    http://wind.nrel.gov/designcodes/preprocessors/airfoilprep/
    [23]Ronald F. Gibson, Principles of Composite Material Mechanics, Second Edition, Taylor & Francis Group , LLC , Boca Raton, 2007.
    [24]J.L. Tangler, D.M. Somers: “NREL Airfoil families for HAWTs,” AWEA Wind power conference.1995.
    [25]IEC 61400-23,"Wind turbine generator systems – Full scale structural testing of rotor blades," First edition 2001-04 ,International Electrotechnical Commission.
    [26]How strain gages work, KYOWA Strain Gage Manual.
    [27]Strain Gauges, TML Tokyo Sokki Kenkyuje co.

    下載圖示 校內:2014-09-03公開
    校外:2014-09-03公開
    QR CODE