| 研究生: |
鄭律文 Cheng, Lu-Wen |
|---|---|
| 論文名稱: |
缺牙區的分布對電腦輔助設計製作之多單位氧化鋯義齒支架密貼性的影響 The influence of edentulous area’s distribution on the marginal and internal fit of CADCAM multi-unit zirconia framework |
| 指導教授: |
陳永崇
Chen, Yung-Chung |
| 共同指導教授: |
林啟倫
Lin, Chi-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 氧化鋯 、義齒支架設計 、內部縫隙 、邊緣差異 |
| 外文關鍵詞: | Zirconia, Framework design, Internal gap, Marginal discrepancies |
| 相關次數: | 點閱:129 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋯材料近年來被廣泛用作全陶瓷贋復體的義齒支架材料。使用電腦輔助設計製造(CAD/CAM)技術和氧化鋯高溫燒結過程,是目前主流的氧化鋯義齒支架製作流程。但是氧化鋯在燒結過程中會產生約20-25%的體積收縮,可能會導致義齒支架邊緣和內部縫隙過大的問題。目前對於長徑距之氧化鋯義齒支架其密貼性與燒結收縮體積變化的影響之相關研究仍是不足的。因此,本研究設計模擬不同缺牙情況的離體實驗,製作五單位之長徑距氧化鋯義齒支架,觀察其邊緣及內部密貼性的表現,期望作為臨床在選擇氧化鋯義齒支架為贋復治療時的參考方向。
本研究設計三種臨床缺牙情況作為實驗組—上顎犬齒及第一小臼齒缺失、上顎側門齒及第一小臼齒缺失、以及上顎側門齒及犬齒缺失。依據缺牙情況設計製作實驗模型,再進行氧化鋯義齒支架的設計製作,每個實驗組製作十組的五單位氧化鋯義齒支架作為實驗樣本(n=10)。使用Computer-aided replica technique量測義齒支架和實驗模型支柱牙之間的邊緣暨內部縫隙,將得到的數據結果用one-way ANOVA進行統計分析,比較各組之間有無顯著的差異。
本研究結果顯示,三種缺牙情況的氧化鋯義齒支架皆在內部咬合面的區域有較大的縫隙值表現,邊緣密貼性的表現可符合在臨床可接受之範圍。另外比較三組實驗組的支柱牙邊緣暨內部縫隙的差異,發現義齒支架的橋體分布會對義齒支架的縫隙大小造成影響。表示氧化鋯燒結過程的體積收縮變化可能會對縫隙大小造成影響。
Dimensional discrepancies of a long-span zirconia framework may result from unfavorable sintering shrinkage or different edentulous conditions. The purpose of this study was to evaluate the marginal and internal fit of five-unit zirconia frameworks with various distributions of pontics after sintering process.
Three experimental groups with different edentulous conditions were designed as follows: Group A- missing maxillary lateral incisor and canine; Group B- missing maxillary lateral incisor and first premolar; and Group C- missing maxillary canine and first premolar, was fabricated. After sintering, the specimens were examined using Computer-aided replica technique to evaluate their marginal and internal discrepancies. Five critical regions were measured, including mesial marginal gap (MMG), mesial axial wall (MAW), occlusal surface (OS), distal axial wall (DAW) and distal marginal gap (DMG). The data of the measurements were statistically analyzed with 1-way ANOVA (α=.05).
The results showed that the largest discrepancies in all groups appeared at the occlusal surface. In the comparison of the discrepancies in the terminal abutments between the experimental groups, statistical differences were found in MAW, OS, DAW (ρ<.05). In the comparison of the discrepancies in the non-terminal abutments, statistical differences were found in MMG, MAW, OS (ρ<.05). Due to the unfavorable sintering shrinkage of zirconia, the largest deformation of the zirconia framework appeared at the occlusal surface. The pontics’ distribution can cause the dimensional discrepancies after sintering process.
1. Rosenstiel SF, Land MF, Fujimoto J. Contemporary Fixed Prosthodontics-E-Book: Elsevier Health Sciences; 2015.
2. MCLEAN JW. The reinforcement of dental porcelain with ceramic oxides. Br Dent J. 1965;119:251-67.
3. Chapter 11 - Restorative Materials—Ceramics A2 - Sakaguchi, Ronald L. In: Powers JM, editor. Craig's Restorative Dental Materials (Thirteenth Edition). Saint Louis: Mosby; 2012. p. 253-75.
4. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3).
5. Kelly JR. Dental ceramics: current thinking and trends. Dental Clinics of North America. 2004;48(2):513-30.
6. Giordano R, McLaren EA. Ceramics overview: classification by microstructure and processing methods. Compend Contin Educ Dent. 2010;31(9):682-4.
7. Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and current practice. Australian dental journal. 2011;56:84-96.
8. Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, et al. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dental Materials. 2017;33(1):84-98.
9. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008;24(3):289-98.
10. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24(3):299-307.
11. Hamza TA, Sherif RM. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems. The Journal of Prosthetic Dentistry. 2017;117(6):762-6.
12. Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceramics international. 2016;42(1):1077-85.
13. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dental Materials. 2016;32(12):e327-e37.
14. Zhang Y, Lawn B. Novel zirconia materials in dentistry. Journal of dental research. 2018;97(2):140-7.
15. Shen J, Xie H, Wu X, Yang J, Liao M, Chen C. Evaluation of the effect of low-temperature degradation on the translucency and mechanical properties of ultra-transparent 5Y-TZP ceramics. Ceramics International. 2020;46(1):553-9.
16. Cotič J, Jevnikar P, Kocjan A, Kosmač T. Complexity of the relationships between the sintering-temperature-dependent grain size, airborne-particle abrasion, ageing and strength of 3Y-TZP ceramics. Dental Materials. 2016;32(4):510-8.
17. Tapie L, Chiche N, Boitelle P, Morenton P, Attal JP, Schmitt N, et al. Adaptation Measurement of CAD/CAM Dental Crowns with X-Ray Micro-CT: Metrological Chain Standardization and 3D Gap Size Distribution. Advances in Materials Science and Engineering. 2016.
18. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dental materials. 2011;27(1):83-96.
19. Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. The Journal of prosthetic dentistry. 2009;101(4):239-47.
20. Edwards Rezende CE, Sanches Borges AF, Macedo RM, Rubo JH, Griggs JA. Dimensional changes from the sintering process and fit of Y-TZP copings: Micro-CT analysis. Dental Materials. 2017;33(11):e405-e13.
21. Rezende CEE, Borges AFS, Gonzaga CC, Duan Y, Rubo JH, Griggs JA. Effect of cement space on stress distribution in Y-TZP based crowns. Dental Materials. 2017;33(2):144-51.
22. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M. Marginal accuracy of four‐unit zirconia fixed dental prostheses fabricated using different computer‐aided design/computer‐aided manufacturing systems. European journal of oral sciences. 2009;117(3):319-25.
23. Christel P, Meunier A, Dorlot JM, Crolet JM, Witvoet J, Sedel L, et al. Biomechanical compatibility and design of ceramic implants for orthopedic surgery. Annals of the New York Academy of Sciences. 1988;523(1):234-56.
24. Conrad HJ, Seong W-J, Pesun IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. The Journal of Prosthetic Dentistry. 2007;98(5):389-404.
25. Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs. Dent Mater. 2015;31(6):624-39.
26. Triwatana P, Nagaviroj N, Tulapornchai C. Clinical performance and failures of zirconia-based fixed partial dentures: a review literature. The journal of advanced prosthodontics. 2012;4(2):76-83.
27. Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: A systematic review. The Journal of Prosthetic Dentistry. 2013;110(6):447-54.e10.
28. Abduo J, Lyons K, Swain M. Fit of zirconia fixed partial denture: a systematic review. Journal of Oral Rehabilitation. 2010;37(11):866-76.
29. Berrendero S, Salido MP, Valverde A, Ferreiroa A, Pradíes G. Influence of conventional and digital intraoral impressions on the fit of CAD/CAM-fabricated all-ceramic crowns. Clinical Oral Investigations. 2016;20(9):2403-10.
30. McLean J, Von Fraunhofer J. The estimation of cement film thickness by an in vivo technique. British dental journal. 1971;131(3):107-11.
31. Belser U, MacEntee M, Richter W. Fit of three porcelain-fused-to-metal marginal designs in vivo: a scanning electron microscope study. The Journal of prosthetic dentistry. 1985;53(1):24-9.
32. Martínez-Rus F, Suárez MJ, Rivera B, Pradíes G. Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. The Journal of prosthetic dentistry. 2011;105(2):108-14.
33. Taylor MJ, Lynch E. Microleakage. Journal of Dentistry. 1992;20(1):3-10.
34. Quintas AF, Oliveira F, Bottino MA. Vertical marginal discrepancy of ceramic copings with different ceramic materials, finish lines, and luting agents: an in vitro evaluation. The Journal of Prosthetic Dentistry. 2004;92(3):250-7.
35. May LG, Kelly JR, Bottino MA, Hill T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: Multi-physics FEA modeling and monotonic testing. Dental Materials. 2012;28(8):e99-e109.
36. Kale E, Seker E, Yilmaz B, Özcelik TB. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. The Journal of Prosthetic Dentistry. 2016;116(6):890-5.
37. Kunii J, Hotta Y, Tamaki Y, Ozawa A, Kobayashi Y, Fujishima A, et al. Effect of sintering on the marginal and internal fit of CAD/CAM-fabricated zirconia frameworks. Dental materials journal. 2007;26(6):820-6.
38. Oh GJ, Yun KD, Lee KM, Lim HP, Park SW. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming. J Adv Prosthodont. 2010;2(3):81-7.
39. An S, Kim S, Choi H, Lee J-H, Moon H-S. Evaluating the marginal fit of zirconia copings with digital impressions with an intraoral digital scanner. The Journal of prosthetic dentistry. 2014;112(5):1171-5.
40. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all‐ceramic three‐unit fixed partial dentures, generated with three different CAD/CAM systems. European journal of oral sciences. 2005;113(2):174-9.
41. Liang S, Yuan F, Luo X, Yu Z, Tang Z. Digital evaluation of absolute marginal discrepancy: A comparison of ceramic crowns fabricated with conventional and digital techniques. The Journal of prosthetic dentistry. 2018;120(4):525-9.
42. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. The Journal of Prosthetic Dentistry. 1989;62(4):405-8.
43. Lee B, Oh KC, Haam D, Lee J-H, Moon H-S. Evaluation of the fit of zirconia copings fabricated by direct and indirect digital scanning procedures. The Journal of prosthetic dentistry. 2018;120(2):225-31.
44. Borba M, Cesar PF, Griggs JA, Della Bona Á. Adaptation of all-ceramic fixed partial dentures. Dental Materials. 2011;27(11):1119-26.
45. Borba M, Miranda Jr WG, Cesar PF, Griggs JA, Bona AD. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology. Brazilian oral research. 2013;27(5):396-402.
46. Mously HA, Finkelman M, Zandparsa R, Hirayama H. Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heat-press technique. The Journal of Prosthetic Dentistry. 2014;112(2):249-56.
47. Holst S, Karl M, Wichmann M, Matta R-ET. A new triple-scan protocol for 3D fit assessment of dental restorations. Quintessence Int. 2011;42(8).
48. Dahl BE, Rønold HJ, Dahl JE. Internal fit of single crowns produced by CAD-CAM and lost-wax metal casting technique assessed by the triple-scan protocol. The Journal of prosthetic dentistry. 2017;117(3):400-4.
49. Boitelle P, Tapie L, Mawussi B, Fromentin O. Evaluation of the marginal fit of CAD-CAM zirconia copings: Comparison of 2D and 3D measurement methods. The Journal of Prosthetic Dentistry. 2018;119(1):75-81.
50. Lee H, Kim H-S, Noh K, Paek J, Pae A. A simplified method for evaluating the 3-dimensional cement space of dental prostheses by using a digital scanner. The Journal of Prosthetic Dentistry. 2017;118(5):584-6.
51. Kim K-B, Kim J-H, Kim W-C, Kim J-H. Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. Journal of Prosthetic Dentistry. 2014;112(6):1432-6.
52. Mai H-N, Lee KE, Ha J-H, Lee D-H. Effects of image and education on the precision of the measurement method for evaluating prosthesis misfit. The Journal of prosthetic dentistry. 2017.
53. Ante I. The fundamental principles of abutment. Michigan D Soc Bull. 1926;8:14-23.
54. Sailer I, Fehér A, Filser F, Gauckler LJ, Luthy H, Hammerle CHF. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20(4):383.
55. Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. Journal of oral rehabilitation. 2014;41(11):853-74.
56. Schmitter M, Mussotter K, Rammelsberg P, Stober T, Ohlmann B, Gabbert O. Clinical performance of extended zirconia frameworks for fixed dental prostheses: two-year results. J Oral Rehabil. 2009;36(8):610-5.
57. Reich S, Kappe K, Teschner H, Schmitt J. Clinical fit of four‐unit zirconia posterior fixed dental prostheses. European journal of oral sciences. 2008;116(6):579-84.
58. Komine F, Gerds T, Witkowski S, Strub JR. Influence of framework configuration on the marginal adaptation of zirconium dioxide ceramic anterior four-unit frameworks. Acta Odontologica Scandinavica. 2005;63(6):361-6.