| 研究生: |
吳豪軒 Wu, Hao-Hsuan |
|---|---|
| 論文名稱: |
奈米碳管在微流體生醫晶片之製作及其對於蛋白質分析之探討 Microfabrication of Carbon Nanotubes on a Microfluidic Chip and its Application for Protein Analysis |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 微流體生醫晶片 、奈米碳管 |
| 外文關鍵詞: | Carbon nanotube, microfludic chip |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合微加工技術及奈米材料製程製作出一微流管道具有奈米碳管之微流體生醫晶片, 並且使用這種新穎微流體生醫晶片在不同pH條件下探討碳管與蛋白質之吸附作用力。
研究第一部分主要藉射頻濺鍍法(RF sputtering)及微波電漿化學氣相沉積法(MP-CVD)成長奈米碳管在微流體生醫晶片之材料上(鈉玻璃)。整體成長奈米碳管之製程包括以射頻濺鍍法濺鍍沉積一層鐵矽(Fe-Si)薄膜在鈉玻璃基材上;接著以微波電漿化學氣相沉積法成長碳管在鈉玻璃基材上,其目的主要固定濺鍍之參數,探討氣相沉積法反應氣體流量比例及成長時間對奈米碳管成長之影響,另外包括分析及清除碳管頂端之雜質。研究結果發現:碳管在不同反應氣體比例下成長在鈉玻璃基材上是屬於反應控制機制(Reaction-controlled mechanism);碳管直徑約22±11 nm,碳管表面性質以帶負電之官能基居多。拉曼光譜分析顯示碳管G-band之半高寬及D-band、G-band之強度比例(ID/IG)隨反應氣體比例提高而有下降之趨勢。碳管隨成長時間反應之活化能約1.96 eV(CH4 / H2=33.3 %)。碳管頂端之雜質經分析後為一鐵碳矽化合物,而在五種清除碳管頂端雜質的方法,以Nd : YAG雷射束清除之效果最好。
研究第二部分是以微加工技術製作出直線形鈉玻璃微流管道,接著以射頻濺鍍法及微波電漿化學氣相沉積法成長碳管在微流管道。此部分探討鐵矽薄膜濺鍍沉積在不同深寬比之微流管道及氣相沉積法反應氣體比例、成長時間對碳管成長之影響。研究結果顯示:鐵矽薄膜皆能濺鍍沉積在寬50、90及140μm的微流管道裡。碳管在不同反應氣體比例下成長在微流管道也是屬於反應控制機制(Reaction-controlled mechanism)
;碳管直徑約52±6 nm。拉曼光譜分析顯示碳管G-band之半高寬隨反應氣體比例提高而有上升之趨勢;D-band、G-band之強度比例(ID/IG)隨反應氣體比例提高而有下降之趨勢。奈米碳管成長在鈉玻璃基材及鈉玻璃微流管道之直徑與長度的差異推測是氣體平均自由路徑不同所造成。
研究第三部分是將已有碳管之微流管道與聚二甲基矽烷(PDMS)平板材料進行接合即完成一新穎微流體生醫晶片,探討在不同pH值條件下碳管與蛋白質間之吸附情形。研究結果顯示:當pH 小於βcasine之pI(5.13),碳管吸附Cy3-βcasine較多,其原因推測是碳管與βcasine間除了產生部分非靜電吸引力外,另存在一些靜電吸引力。
Our research creates a novel nanotube-microfludic chip by integrating MEMS and nanomaterial process. We discuss the adsportion behavior between the protein and carbon nanotube in the microchannel of microfludic chip. This research includes three parts.
In the first part, we grow nanotube on the surface of sodalime glass by RF sputtering and Microwave-plasma chemical vapor deposition (MP-CVD) and discuss the effect of parameters, such as gas ratio and growth time. The result indicates the growth of nanotube on the surface of sodalime glass is reaction -controlled mechanism. The diameter of CNTs is 22±11 nm. The Raman spectrum shows the FWHM of G-band and ID/IG of nanotube is decreasing with increasing the ratio of methane and hydrogen. And the activation energy of nanotube is 1.96 eV with increasing growth time (CH4 / H2=33.3 %) . The effect of destroying the impurity on top of nanotube is the best by Nd:YAG laser.
In the second part, we synthesize nanotube in the microchannel of sodalime glass by RF sputtering and MP-CVD. By the way, we also discuss the effect of parameters, such as gas ratio and growth time. The result indicates the growth of nanotube in the microchannel of sodalime glass is also reaction -controlled mechanism. The diameter of CNTs is 52±6 nm. The Raman spectrum shows the FWHM of G-band of nanotube is increasing with increasing the ratio of methane and hydrogen, the ID/IG is decreasing with increasing the ratio of methane and hydrogen. The difference of nanotube on the surface and in the microchannel of sodalime glass is speculated from gas mean free path (mfp).
In the third part, we bond the PDMS and the microchannel which have synthesized nanotube and do bioanalysis. The protein adsorption is strong with nanotube in the microfludic chip when pH < pI (βcasine), this indicates the existence of non-electrostatic and electrostatic force between the protein and nanotube in the microchannel of microfludic chip.
【1】 N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, Y. Baba. Anal. Chem. 2003, 76, 15-22.
【2】 M. Shim, N. Wong, N. Kam, R. Chen, Y. Li, H. Dai. Nano Lett. 2002, 2, 285-288.
【3】 J. Wang, M. Musameh, Y. Lin. J. Am. Chem. Soc. 2003, 125, 2408-2409.
【4】 J. Wang, M. Musameh. Anal. Chem. 2003, 75, 2075-2079.
【5】 P. J. Britto, K. S. V. Santhanam, P. M. Ajayan. Bioelectrochem. Bioenerg. 1996, 41, 121-125.
【6】 F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T. W. Ebbeson, C. Mioskowski. Angew. Chem., Int. Ed. 1999, 38, 1912-1915.
【7】 Y. Li, Y. Chen, R. Xiang, D. Ciuparu, L. D. Pfefferle, C. Horbath, J. A. Wilkins. Anal. Chem. 2005, 77, 1398-1406.
【8】 J. M. Ting, K. H. Liao. Chem. Phys. Lett. 2004, 396, 469-472.
【9】 S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge. Appl. Phys. Lett. 2003, 83,135-137.
【10】X. Wang, Z. Hu, Q. Wu, Y. Chen. Catalysts Today. 2002, 72, 205-211.
【11】Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, J. M. Kim. Synth. Met. 2000, 108, 159-163.
【12】J. I. B.Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan, A. G. Fitzgerald. Diamond Relat mater. 2002, 11, 918-921.
【13】 J. L. Viovy. Rev Mod Physics. 2000, 72, 813-872.
【14】 L. Yang, E. Guihen, J. D. Holmes, M. Loughran, G. P. O’sullivan, J. D. Glennon. Anal. Chem. 2005, 77, 1840-1846.
【15】J. Wang, G. Chen, M. P. Chatrathi, M. Musameh. Anal. Chem. 2004, 76, 298-302.
【16】 K. Maehashi, K. Matsumoto, K. Kerman, Y. Takamura, E. Tamiya. Jpn. J. Appl. Phys. 2004, 43, L1558-L1560.
【17】K. Tanigaki, S. Kuroshima, T. W. Ebbesen. Thin Solid Films. 1995, 257, 154-165.
【18】B. I. Yakobson, R. E. Smalley. American Scientist. 1997, 85, 324-343.
【19】S. Iijima, T. Ichihashi. Nature 1993, 363, 603-605.
【20】M. S. Dresselhaus, G. Dresselhaus, R. Sait. Carbon. 1995, 33, 883-891.
【21】 M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
【22】H. Dai. Surface Science. 2002, 500, 218-241.
【23】S. Iijima. MRS Bulletin. 1994, 19, 43.
【24】T. W. Ebbesen, Carbon Nanotubes: preparation and properties. CRC press. 1997.
【25】O. Zhou, R. M. Fleming, D. W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum. Science 1994, 263, 1744-1747.
【26】S. Amelinckx, D. bernaerts, X. B. Zhang, G. Van Tendeloo. J. Van Landuyt. Science 1995, 267, 1334-1338.
【27】S. Iijima. Nature 1991, 56, 354-356.
【28】H. Dai, E. W. Wong, C. M. Lieber. Science 1996, 272, 523-526.
【29】T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio. Nature 1996, 382, 54-56.
【30】W. Primak, L. H. Fuchs, Phys. Review. 1954, 95, 22-31.
【31】H. Hiura, T. W. Ebbesen, K. Tanigaki. Chem Phys Lett. 1993, 202, 509-512.
【32】Saito, Y.; Nishikubo, K.; Kawabata, K.; Matsumoto, T. J. Appl. Phys. 1996, 80, 3062-3067.
【33】Cadek, M.; Murphy, R.; McCarthy, B.; Drury, A.; Lahr, B.; Barklie, R. C.; in het Panhuis, M.; Coleman, J. N.; Blau, W. J. Carbon. 2002, 40, 923-298.
【34】 Zhu, H. W.; Jiang, B.; Xu, C. L.; Wu, D. H. J. Phys. Chem. B. 2003, 107, 6514-6518.
【35】 Huang, H.; Kajiura, H.; Tsutsui, S.; Hirano, Y.; Miyakoshi, M.; Yamada, A.; Ata, M. Chem. Phys. Lett. 2001, 343, 7-14.
【36】Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smalley, R. E. J.Phys. Chem. 1995, 99, 10694-10697.
【37】Terrones, M.; Grobert, N.; Zhang, J. P.; Terrones, H.; Olivares, J.; Hsu, W. K. et al. Chem. Phys. Lett.1998, 285, 299-305.
【38】 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H.Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley. Science 1996, 273, 483-487.
【39】 A. C. Dillon, T. Gennete, M. Kim, J. L. Alleman, P. A. Parilla, and M. J. Heben. Adv Mater. 1999, 11, 1354-1358.
【40】Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. J.; Smalley, R. E. Chem. Phys. Lett.
1995, 243, 49-54.
【41】Hirahara, K.; Suenaga, K.; Bandow, S.; Iijima, S. Chem Phys Lett. 2000,324, 224-
【42】Kuo, T. F.; Chi, C. C.; Lin, I. N. Jpn. J. Appl. Phys. 2001, 40, 7147-7150.
【43】Laplaze, D.; Bernier, P.,; Flamant, G.; Lebrun, M.; Brunelle, A.; Della-Negra, S. J. Phys. B, 1996, 29,
【44】 Laplaze, D.; Bernier, P.; Maser, W. K.; Flamant, G.; Guillard, T.; Loiseau, A. Carbon. 1998, 36, 685-688.
【45】T. Guillard, S. Cetout, G. Flamant, D. Laplaze. J. Mater. Sci. 2000, 35, 419-425.
【46】 W. K. Hsu, J. P. Hare, M. Terrones., H. W. Kroto, D. R. M. Walton, Nature 1995, 377, 687.
【47】W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto, D. R. M. Walton. Chem. Phys. Lett. 1996, 262, 161-166.
【48】M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, J. W. Park. Diamond and Related materials. 2001, 10, 1235-1240
【49】 S. Xie, W. Li, Z. Pan, B. Chang, L. Sun. Materials Science and Engineering A. 2000, 286, 11-15.
【50】 X. H. Chen, S. Q. Feng, Y. Ding, J. C. Peng, Z. Z. Chen. Thin Solid Films. 1999, 339, 6-9.
【51】C. J. Lee, J. Park, S. Y. Kang, J. H. Lee. Chem. Phys. Lett. 2000, 323, 554-559.
【52】C. J. Lee, J.H. Park, J. Park. Chem. Phys. Lett. 2000, 323, 560-565.
【53】N. Grobert, M. Terrones et al. Applied Physics A. 2000, 70, 175-183.
【54】M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones et al., Nature 1997, 388, 52-55.
【55】M. Terrones et al. Chem. Phys. Lett. 1998, 285, 299-305.
【56】 N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker. Catalysis Today. 1997, 37, 295-307.
【57】Q. Liang, Q. Li, D. L. Chen, D. R. Zhou, B. L. Zhang, Z. L. Yu. Chemical Journal of Chinese Universities-Chinese. 2000, 21, 623.
【58】N. M. Rodriguez, M. S. Kim, F. Fortin, I. Mochida, R. T. K. Baker. Applied Catalysis A. 1997, 148, 265-282.
【59】C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, K. S. No. Chem. Phys. Lett. 2000, 327, 277-283.
【60】K. Hernadi, A. Fonseca, J. B. Nagy, A. Siska, I. Kiricsi. Applied Catalysis A. 2000,
199, 245-255.
【61】徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
【62】Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, J. M. Kim. Diamond and Related Materials. 2002, 11, 59-66.
【63】C. J. Lee, J. Park, S. Han, J. Ihm. Chem. Phys. Lett. 2001, 337, 398-402.
【64】W. D. Zhang, Y. Wen, L. M. Shao, W. C. Tjiu, X. Q. Guo, G. M. Leong. Carbon. 2002, 40, 1981-1989.
【65】J. M. Ting, C. C. Chang. Appl. Phys. Lett. 2002, 80, 324-325.
【66】K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima. Science 2004, 306, 1362-1364.
【67】S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green. Nature 1994, 372, 159-162.
【68】K. A. Williams, T. M. Veenhuizen, G. de la Torre Beatriz, R. Eritja, C. Dekker. Nature 2002, 420, 761.
【69】I. A. Banerjee, L. Yu, H. Matsui. Nano. Lett. 2003, 3, 283-287.
【70】J. J. Gooding, R. Wibowo, J. Q. Liu, W. Yang, D. Losic, S. Orbons, F. J. Mearns, J. G. Shapter, D. B. Hibbert. J. Am. Chem. Soc. 2003, 125, 9006-9007.
【71】K. Wu, J. Fei, S. Hu. Analytical Biochemistry. 2003, 318, 100-106.
【72】 M. J. Moghaddam, S. Taylor, Mei. Gao, S. Huang, L. Dai, M. J. McCall. Nano. Lett. 2004, 4, 89-93.
【73】M. Shim, N. W. Shi Kam, R. J. Chen,Y, Li. H. Dai. Nano. Lett. 2002, 2, 285-288.
【74】Q. Chen, L. Dai, M. Gao, S. Huang, A. Mau. J. Phys. Chem. B. 2001, 105, 618-622.
【75】黃冠瑞,「高效能微流體晶片之設計製作與其在生物醫學之應用」,國立成功大學工程科學系,中華民國九十年六月。
【76】徐玄修,「整合型微透析電泳晶片之研發」,國立成功大學化學系,中華民國九十二年六月。
【77】劉若梅,一維奈米碳材合成與微結構之研究,國立成功大學材料科學及工程研
究所碩士論文,2002。
【78】 S. M. Mominuzzaman, K. M. Krishna, T. Soga, T. Jimbo, M. Umeno. Carbon. 2000, 38, 127-131.
【79】A. C. Ferrari, J. Robertson. Phys. Rev. B. 2000, 61, 14095-14107.
【80】廖坤厚,國立成功大學材料科學及工程研究所,待發表之博士論文。
【81】W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science 1996, 274, 1701-1703.
【82】Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 1998, 282, 1105-1107.
【83】 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. cassell, H. Dai, Science 1999, 283, 512-514.
【84】C. J. Lee, J. Park, S. Y. Kang, J. H. Lee , Chem. Phys. Lett. 2000, 326, 175-180.
【85】U. Kim, R. Pcionek, D. M. Aslam, D. Tomanek. Diamond Related Material. 2000, 10, 1947-1951.
【86】Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim. J. Vac. Sci. Technol. A . 2000, 18, 1947-1951.
【87】S. J. Park, S. Y. J. Carbon. 2004, 42, 2113-2115.
【88】M. Cadek, R. Murphy, B. McCarthy, A. Drury, B. Lahr, R. C. Barklie, M. in het Panhuis, J. N. Coleman, W. J. Blau, Carbon. 2002, 40, 923-928.
【89】S. M. Huang, L. M. Dai, J. Phys. Chem. B. 2002, 106, 3543-3545.
【90】X. Bai, D. Li,; D. Du, H. Zhang, L. Chen, J. Liang. Carbon. 2004, 42, 2125-2127.
【91】劉光耀,’’光聚合高分子在微流體管道上的設計與製作’’,國立成功大學化學研究所碩士論文,2003。
【92】 F. Tuinstra, J. L. Koenig. J. Chem. Phys. 1970, 1126-1130.
【93】 Milton Ohring, “Materials science of thin films”, p61.